Bayes Nets

AI Class 10 (Ch. 14.1-14.4.2; skim 14.3)
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Review: Independence

What does it mean for A and B to be independent?
+ P(A) L P(B)

* A and B do not affect each other’s probability

* P(A A B) = P(A) P(B)

Review: Bayes’ Rule

What is Bayes’ Rule?
PUHIE)) - P(E,|H)P(H,)
P(E,)

What's it useful for?
+ Diagnosis
- Effect is perceived, want to know (probability of) cause
P(effect | cause)P(cause)
P(effect)

P(cause |l effect) =

R&N, 495496

Today’s Class

» Bayesian networks
* Network structure
 Conditional probability tables
 Conditional independence

* Inference in Bayesian networks
- Exact inference
« Approximate inference

Review: Conditioning

‘What does it mean for A and B to be conditionally
independent given C?

* A and B don'’t affect each other if C is known
« P(AABIC)=P(AIC)P(BIC)

Review: Joint Probability

‘What is the joint probability of A and B?
* P(A B) (also known as P(A A B) )

The probability of any pair of legal assignments.
* Generalizing to > 2, of course

Booleans: expressed as a matrix/table

alarm | ~alarm

burglary | 0.09 0.01

—burglary | 0.1 0.8

Continuous domains: probability functions
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Bayes’ Nets: Big Picture

* Problems with full joint distribution tables as our
probabilistic models:
- Joint gets way too big to represent explicitly
 Unless there are only a few variables
+ Hard to learn (estimate) anything empirically about more
than a few variables at a time
* Why?

A —A
E -E E -E
0.01 | 0.08 | 0.001 | 0.009
0.01 | 0.09 | 0.01 | 0.79
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Example: Toothache

» Random variables:
© How'’s the weather?
« Do you have a toothache?
« Does the dentist’s probe catch when she pokes your tooth?
« Do you have a cavity?

S e

Slides derived from Matt E. Taylor, WSU'

Bayes’ Nets: Big Picture

Bayes’ nets: a technique for describing complex
joint distributions (models) using simple, local
distributions (conditional probabilities)

* A type of graphical models

‘We describe how variables interact locally
 Local interactions chain together to give global, indirect

interactions @
Ceaen >

Slides derived from Matt E. Taylor, WSU

Slides derived from Matt E. Taylor, WSU

Graphical Model Notation

Nodes: variables (with domains)
Can be assigned (observed) or unassigned (unobserved)

Arcs: interactions
- Indicate “direct influence” between
 Formally: encode conditional independence
« Toothache and Catch are conditionally independent, given Cavity

For now: imagine that @
arrows mean causation
>

* (in general, they don’t!)
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Bayesian Belief Networks (BNs)

» Let’s formalize the semantics of a BN
A set of nodes, one per variable X

A directed arc between each con-influential node
X 2 Y means X has an influence on ¥

» A directed, acyclic graph

P(X|A1... An)

Conditional Probability Tables
For X;, CPD P(X, | Parents(X,)) quantifies effect of parents on X;

Parameters are probabilities in conditional probability tables (CPTs):

A P(BJA)
001
099
0.7

03

C P(C|B)
false |04
true |06
false |09
true | 0.1

D P(D|B)
false | 0.02
true | 0.98
false | 0.05
true | 0.95

Bayesian Belief Networks (BNs)

* Definition: BN = (DAG, CPD)

DAG: directed acyclic graph (BN’s structure)

» Nodes: random variables
Typically binary or discrete
Methods exist for continuous variables

« Arcs: indicate probabilistic dependencies between nodes
Lack of link signifies conditional independence

CPD: conditional probability distribution (BN’s parameters)

« Conditional probabilities at each node, usually stored as a table

(conditional probability table, or CPT)

Bayesian Belief Networks (BNs)

¢ Each node X has a conditional
probability distribution:

P(X; | Parents(X;))

A collection of distributions over X P(X|A1...An)
One for each combination of parents’ values
Quantifies the effects of the parents on a node

* CPT: conditional probability table

Description of a noisy “causal” process
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CPTs cont’d

» Conditional Probability Distribution for C given B

« If you have a Boolean variable with k Boolean
parents, this table has 2¥*! probabilities

For a given combination of

values of the parents (B in

c P(C|B) this example), the entries for

false | 0.4 P(C=true | B) and

P(C=false | B) must sum to 1
Example:

P(C=true | B=false) +

P(C=false |B=false ) =1

true 0.6
false | 0.9

true 0.1

Bayesian Belief Networks (BNs)

* Definition: BN = (DAG, CPD)
DAG: directed acyclic graph (BN’s structure)
* Nodes: random variables
Typically binary or discrete
Methods exist for continuous variables
 Arcs: indicate probabilistic dependencies between nodes
Lack of link signifies conditional independence!

* CPD: conditional probability distribution (the BN’s
parameters)

Conditional probabilities at each node, usually stored as a table
(conditional probability table, or CPT)
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Bayesian Belief Networks (BNs)

* Definition: BN = (DAG, CPD)
- DAG: directed acyclic graph (BN’s structure)
« CPD: conditional probability distribution (BN’s parameters)
« Conditional probabilities at each node, usually stored as a table
(conditional probability table, or CPT)

P(x; 1) where 7, is the set of all parent nodes of x;

« Root nodes are a special case
* No parents, so use priors in CPD:

7w, =D, so P(x;|m,)=P(x;)

Probabilities in BNs

* Bayes’ nets implicitly encode joint distributions as a
product of local conditional distributions.

 To see probability of a full assignment, multiply all the
relevant conditionals together:

n
P(x,,X,,..x,) = HP(x,. | parents(X,))

i=1
- Example: @
P(+cavity, +catch, mtoothache) = ? @ @

» This lets us reconstruct any entry of the full joint
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The Chain Rule

s Py Aa, A Aay) = P(ay) x
P(a, | a;) x
P(ozl oy Aay) x ... x
P(a, 1o, A Aay,y)
=i Plosl oy A Aay )

=P(x,,....x,)=TI_ P(x, | 7,)

artint.info/ html/ Artlnt_143.html

Example BN

P(A) = 0.001

P(C|A) =02
P(B|A)=03 A4)=0
P(B|-A) = 0.001 (C)  P(Cl-A)=0.005

P(DB,C)=0.1 P(E|C) = 0.4
P(D[B,-C) =0.01 P(E|-C) = 0.002
P(D|-B,C) = 0.01

P(D|-B,-C) = 0.00001

‘We only specify P(A) etc., not P(mA), since they have to sum to one
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Conditional Independence
and Chaining

Conditional independence assumption: P(x, | 7,,q) = P(x, | ;)
* ¢ is any set of variables (nodes)
other than x; and its successors

* 7, blocks influence of other nodes
on x; and its successors
* That is, g influences x; only through
variables in 7;)

 With this assumption, complete joint probability distribution
of all variables in the network can be represented by
(recovered from) local CPDs by chaining these CPDs:

P(x,,...,x,)=II" P(x; | 7;)
c 2%
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The Chain Rule

P(x,,...,x,)=TI_ P(x, |7,
€8, P(x,,....,x,)=P(x)P(x, | x)P(x;|x,x2)...
Decomposition:

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic | Rain) P(Umbrella | Rain, Traffic)

‘With assumption of conditional independence:

P(Traffic, Rain, Umbrella) =
P(Rain) P(Traffic | Rain) P(Umbrella | Rain)

Bayes’ nets express conditional independence
assumptions
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Chaining: Example

Computing the joint probability for all variables is easy:

P(a, b, c,d, e)
= P(e | a,b, ¢, d) P(a, b, c, d) by the product rule
= P(e | ¢) P(a, b, ¢, d) by cond. indep. assumption
=Pl | c)Pd | a,bc)P(a,b,c)
=Pl | )P | b,c)P(c | a b)P(a,b)
=Pl )P | b c)P(c|a)P(b | a)P(a)
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Independence and Causal Chains

Important question about a BN:

« Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter-example

Question: are X and Z necessarily independent?

* No. (E.g., low pressure causes rain, which causes
traffic)

+ X can influence Z, Z can influence X (via Y)
This configuration is a “causal chain”
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Inference in Bayesian
Networks

Chapter 14.4.1-14.4.2

Some material borrowed from Lise Getoor

Topological Semantics

A node is conditionally independent of its non-
descendants given its parents

A node is conditionally independent of all other
nodes in the network given its parents, children, and
children’s parents (also known as its Markov
blanket)

A method called d-separation can be applied to
decide whether a set of nodes X is independent of
another set Y, given a third set Z

Two More Main Patterns

Common Cause:

= Y cause X and Y causes Z

+ Are X and Z independent?

 Are X and Z independent given Y?

Common Effect:

« Two causes of one effect

 Are X and Z independent? (yes)
 Are X and Z independent given Y?
—No!

 Observing an effect “activates” influence
between possible causes.
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Inference Tasks

Simple queries: Compute posterior marginal P(X; | E=e)
- E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false)

Conjunctive queries:
- P(X, X; | E=e) = P(X; | e=e) P(X; | X, E=e)

Optimal decisions:
* Decision networks include utility information
* Probabilistic inference gives P(outcome | action, evidence)

Value of information: Which evidence should we seek next?
Sensitivity analysis: Which probability values are most critical?

Explanation: Why do I need a new starter motor?
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Approaches to Inference

» Exact inference * Approximate inference
- Enumeration * Stochastic simulation /
* Belief propagation in sampling methods
polytrees * Markov chain Monte
* Variable elimination Carlo methods
- Clustering / join tree * Genetic algorithms
algorithms * Neural networks

* Simulated annealing
* Mean field theory

Inference by Enumeration

Add all of the terms (atomic event probabilities)
from the full joint distribution

If E are the evidence (observed) variables and Y are
the other (unobserved) variables, then:
PXle)=aPX,E)=a3 PCX,E,Y)

Each P(X, E, Y) term can be computed using the
chain rule

Computationally expensive!

Example 1 cont’'d

P(+b,+j,+m) =
P(+b)P(+e) P(+a|+b, +e) P(+j|+a) P(+m|+a)+
P(+b)P(+¢)P(—a|+b, +e) P(+j|—a) P(+m|—a)+
P(+b)P(—e)P(+al+b, —e) P(+j|+a) P(+m|+a)+
P(+b)P(—e) P(—a|+b, —e) P(+j|—a) P(+m|—-a)
®) E®)
P(+m | +b, +¢)? A

) W
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Direct Inference with BNs

* Instead of computing the joint, suppose we just
want the probability for one variable

» Exact methods of computation:
* Enumeration
* Variable elimination
- Join trees: get the probabilities associated with every
query variable

Example 1: Enumeration

» Recipe:
- State the marginal probabilities you need
- Figure out ALL the atomic probabilities you need

* Calculate and combine them ° Q
* Example:
< P(+b | +j, +m) = °

P(+b, +{, +m)

T
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Example 2: Enumeration

* P(x) =2 ; P(x;| ) P(m)
* Suppose we want P(D=true)
* Only E is given as true

* P(dle)=aZX,P(a,b,c,d,e) (where o. = 1/P(e)
=aZ,scP@) P(bla)P(cla)P(dIbc)Plelc)

» With simple iteration, that’s a lot of repetition!
= P(e]c) has to be recomputed every time we iterate over C=true
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Variable Elimination

Basically just enumeration, but with caching of
local calculations

Linear for polytrees (singly connected BNs)

Potentially exponential for multiply connected BNs

Exact inference in Bayesian networks is NP-hard!

Join tree algorithms are an extension of variable
elimination methods that compute posterior
probabilities for all nodes in a BN simultaneously

42

Variable Elimination: Example

P(w)= 2 P(w |1,8)P(r|c)P(s|c)P(c)

= E P(w[r,s)) P(r|c)P(s|c)P(c

= E P(w | 1,5)f,(1,5) fy(r,s)

Sprinkler >  TRain>
< WetGrass >

A More Complex Example

Visit to
Asia

Variable Elimination Approach

General idea:

* Write query in the form
PX,0= 3 XS] [P 1pa)

Note that there is no o term here
It’s a conjunctive probability, not a conditional probability...

« Iteratively
Move all irrelevant terms outside of innermost sum
Perform innermost sum, getting a new term
Insert the new term into the product
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Computing Factors

=
@
a

P(R|C) P(S|C) P©C) P(RIC) P(S|C) P(C)

IR R ]
IR N R
IR N R

f,(R,S) = ¥, P(RIS) P(SIC) P(C)

Lungs | & &

*  We want to compute P(d) o
* Need to eliminate: v,s,x,z,/,a,b o O
Initial factors:

PW)P(s)P(t1v)P(L1 )P(b|s)P(alt,1)P(x1a)P(d | a,b)

©,

®




® @
Lungs 2 & &

*  We want to compute P(d) Y] O,
+ Need to eliminate: vs,x,5,a,b O ©)
Initial factors:

P(_v)P(s)P(t IVP(1s)P(bls)P(alt,l)P(xla)P(dla,b)
Eliminate: v

Compute: f, (1) = EP(V)P(I 1v)
:MVP(S)P(I Is)P(bls)P(alt,)P(x|a)P(d|a,b)
* Note: f,(t) = P(1)

+ In general, result of elimination is not necessarily a probability term
) 5C CMSC 67 48
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Lungs4 & &

*  We want to compute P(d) @ O,
* Need to eliminate: x,,/,a,b €3] @

Initial factors
P(W)P(s)P(tIv)P(l1s)P(bls)P(alt,)P(xla)P(d|a,b)
= [ (OP(s)P(1s)P(bls)P(alt,l)P(x|a)P(d|a,b)
Bliminate:x = L,(0f.(b.DP(al.)P(x1a)P(d | a,b)

Compute: f,(a)= EP(xIa)
Y S r0fGD f.(@)P(alt,))P(d|a,b)

Note: f,(a) = 1 for all values of a /!
50

©,

<
Lungs 6 & &

*  We want to compute P(d) €Y @&
* Need to eliminate: /,a,b o o

Tnital factors  P()P()P(t V)P 1)P(b1s)P(alt,)P(x1a)P(d |a,b)
= £(OP(5)PU15)P(b|5)P(alt,))P(x|a)P(d ) a,b)
= f(0f,(b,hHP(alt,)P(x|a)P(d|a,b)
= f.(Of.(b.1)f(a)P(alt,1)P(d | a,b)
= f.(b.))f(a)f,(a.)P(d|a,b)

Eliminate: /

Compute: f(a,b)= Efs(b,l)ﬁ(a,l)
= fi(@,b)f.(a)P(da,b)
BCCITSCETT 5

® @©
Lungs3 & &

*  We want to compute P(d) ) O,
» Need to eliminate: s,x,t,/,a,b O (o)
Initial factors:

PW)P(s)P(t1v)P(l1s)P(bls)P(alt,l)P(x|a)P(d|a,b)

= fv(t)Ils)ILls)P(b Is)P(alt,l)P(x|a)P(dla,b)
Eliminate: s
Compute: £,(b:1) = Y P()P(b15)P(115)

= fv(t)f:(b,l)P(a 1t,1)P(x|a)P(d|a,b)

* Summing on s results in a factor with two arguments f(b,!)
+ In general, result of elimination may be a function of several variables
MBC CMSC 67 49
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Lungs 5 & &

*  We want to compute P(d) @ &
* Need to eliminate: ,/,a,b 0 o
Initial factors  P(V)P(s)P(t |v)P(I1s)P(b|s)P(alt,)P(x1a)P(d|a,b)
= [ ()P(s)P(1s)P(bls)P(alt,l)P(x|a)P(d|a,b)
= f,) f,(b,))P(alt,)P(x|a)P(d|a,b)
= [0 f,b.Df (@)Palt,hP(da,b)
Eliminate: ¢
Compute: f,(a,))= ¥, f,(OP(alt,])
I = f.(b.))f.(a)f,(a,[)P(d|a,b)
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Lungs Finale

*  We want to compute P(d)
* Need to eliminate: &

Initial factors P(v)P(s)P(¢ |v)P(I1 5)P(b15)P(alt,)P(xa)P(d 1 a,b)
= £.(OP(s)P(U1$)P(b1s)P(alt,))P(x|a)P(d | a,b)
= £.(Of.(b.1)P(alt,)P(x|a)P(d | a,b)
= £.(Of.(b.)f.(a)P(alt,)P(d) a,b)
= £.(b.)f.(a)f (a,])P(d) a,b)
= f(a.b)f (@P(d]a,b)= f,(b.d)= f,(d)

Eliminate: a,b

Compute: f,(b,d)= Ef,(a,b)ﬂ(a)P(d la,b)  f,(d)= Ef:z(b’d)
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» ®
Dealing with Evidence &

@ &
© @

* How do we deal with evidence?
And what is “evidence?”
Variables whose value has been observed

» Suppose we are given evidence: V=1, S=f D=t

* We want to compute P(L, V=1,S=f,D =1)

. . . o o
Dealing with Evidence & &

@ ®

¢ Sonow... & o)
Given evidence V=1, S=f D=t
Compute P(L,V=1,S=f,D=t1)
Initial factors, after setting evidence:
ForT o O v D py OIP@11,DP(X10) fo gy (D)

Variable Elimination Algorithm

* LetX,,..., X, be an ordering on the non-query variables

e Fori=m,..., 1 222 HP(Xj | Parents(X )

X| XZ Xm /
In the summation for X, leave only factors mentioning X;
Multiply the factors, getting a factor that contains a number for each
value of the variables mentioned, including X;
Sum out X, getting a factor f that contains a number for each value
of the variables mentioned, not including X;

Replace the multiplied factor in the summation

: . , » ®
Dealing with Evidence &~ &

@ ®
‘We start by writing the factors: & o
P()P(s)P(t1v)P(I15)P(b15)P(alt,))P(x|a)P(d|a,b)
Since we know that V' = ¢, we don’t need to eliminate V'
Instead, we can replace the factors P(V) and P(T/V) with
Joon =PV =1 foq(T)=P(T 1V =1)

These “select” appropriate parts of original factors given
evidence

Note that fpy, is a constant, so does not appear in
elimination of other variables
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Dealing with Evidence

Given evidence V' =1, S =f D = ¢, we want to compute P(L, V=1,S=f,D=t)
 Initial factors, after setting evidence:
FrrSrerFoian@Fpin Do GIP@ EDPGNG) g (.)
+ Eliminating x, we get
SeerSedpam O iy D f pay (DI P@l t.1D) £,(a) fp o) (@.b)

+ Eliminating 7, we get

fP(v)fP(;)fP(I\:)(l)fP(b\:)(b)f;(a’l).ﬂ(a)fP ) (@>0)

+ Eliminating a, we get
Srar e Sean D f pan (D) £ (B,1)

+ Eliminating b, we get

e fra0 OO

Exercise: Enumeration
p(smart)=.8 p(study)=.6

“Lp(prep)...) | smart

study 9

~study |5

pepassl..) Query: What is the
probability that a student
studied, given that they
~fair . . . : pass the exam?

fair




Exercise: Variable Elimination
p(smart)=.8 p(study)=.6

smart | ~smart

9 7

5 1

p(pass...) 0 Query: What is the
probability that a student

fair : i i : is smart, given that they
~fair . . . . pass the exam?

Summary

* Bayes nets
Structure
Parameters
Conditional independence
Chaining

* BN inference
Enumeration
Variable elimination
Sampling methods
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