

Review: Independence

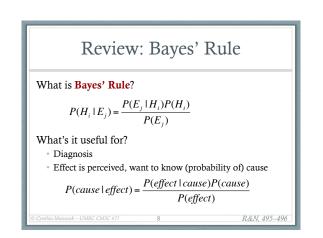
What does it mean for A and B to be **independent**?

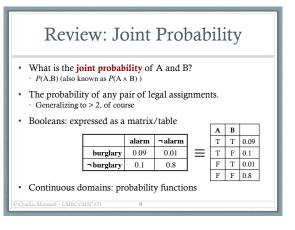
- P(A) **L** P(B)
- A and B do not affect each other's probability
- $P(A \land B) = P(A) P(B)$

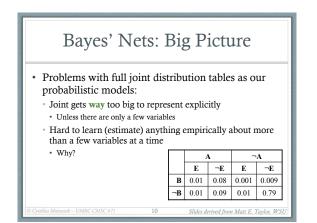
Review: Conditioning

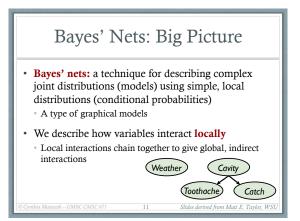
What does it mean for A and B to be **conditionally independent given C?**

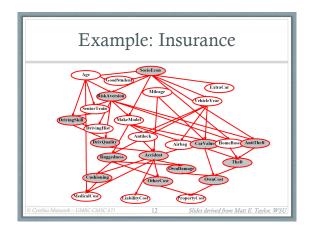
- A and B don't affect each other if C is known
- $P(A \land B | C) = P(A | C) P(B | C)$

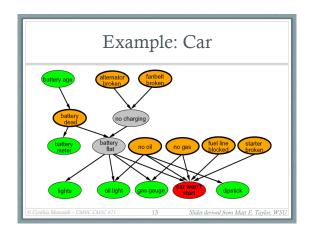


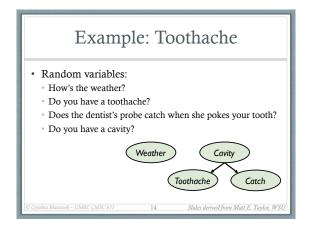


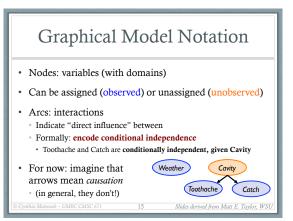


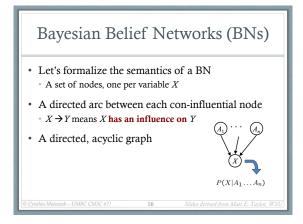


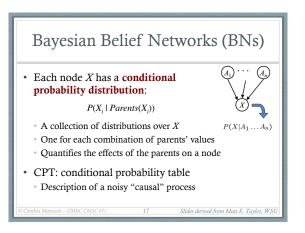


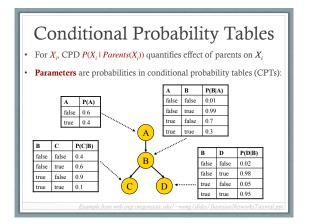


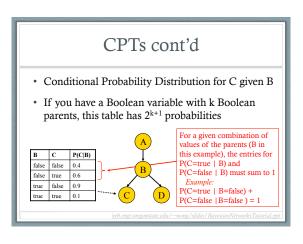


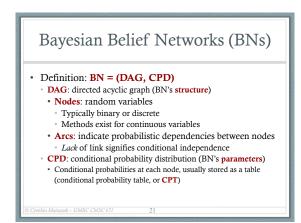


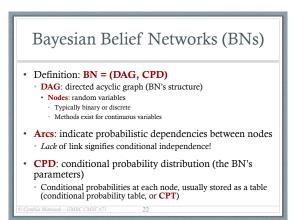


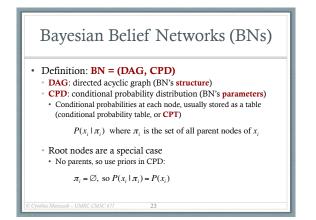


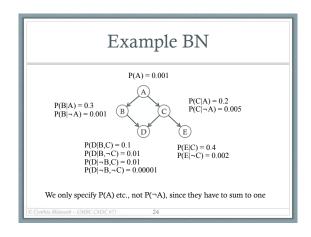


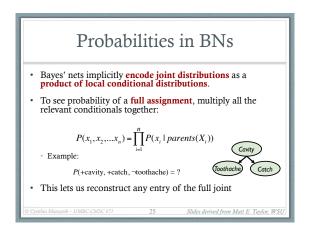


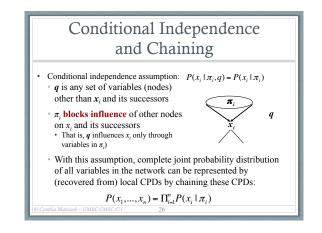


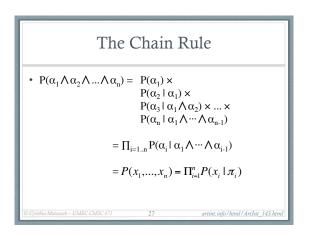


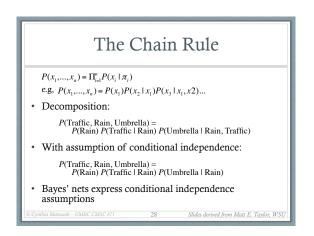


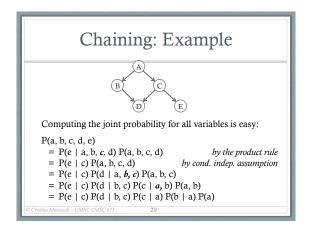


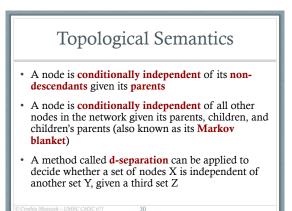


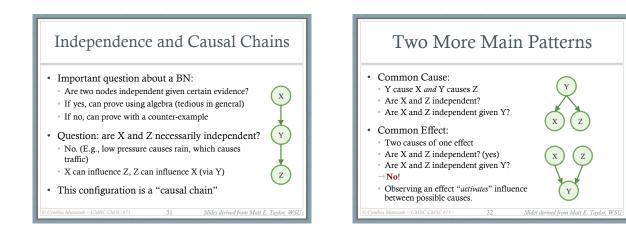


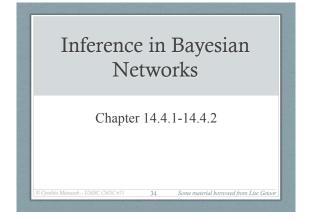


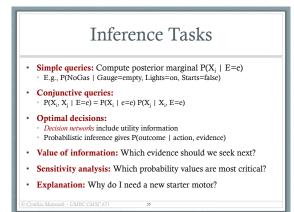


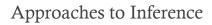












- Exact inference
 Enumeration
- Enumeration
 Belief propagation in
- polytrees
- Variable elimination
 Clustering / join tree algorithms
- Stochastic simulation / sampling methods

· Approximate inference

- Markov chain Monte Carlo methods
- Genetic algorithms
- Neural networks
- Simulated annealing
- Mean field theory

Direct Inference with BNs

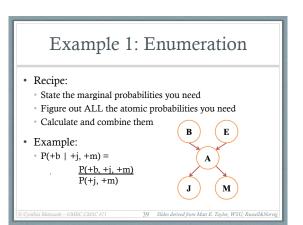
- Instead of computing the joint, suppose we just want the probability for *one* variable
- Exact methods of computation:
 - Enumeration
 - Variable elimination
 - Join trees: get the probabilities associated with every query variable

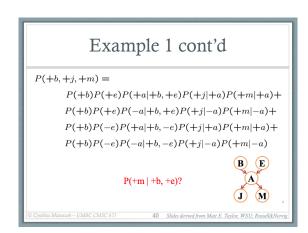
37

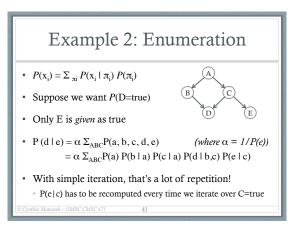
Inference by Enumeration

36

- Add all of the terms (atomic event probabilities) from the full joint distribution
- If E are the evidence (observed) variables and Y are the other (unobserved) variables, then:
 P(X | e) = α P(X, E) = α Σ P(X, E, Y)
- Each P(X, E, Y) term can be computed using the chain rule
- Computationally expensive!







Variable Elimination

- Basically just enumeration, but with caching of local calculations
- Linear for polytrees (singly connected BNs)
- Potentially exponential for multiply connected BNs - Exact inference in Bayesian networks is NP-hard!
- Join tree algorithms are an extension of variable elimination methods that compute posterior probabilities for **all** nodes in a BN simultaneously

42

Variable Elimination Approach

General idea:

• Write query in the form

$$P(X_n, e) = \sum_{x_i} \cdots \sum_{x_i} \sum_{x_j} \prod_i P(x_i \mid pa_i)$$

Note that there is no
$$\alpha$$
 term here

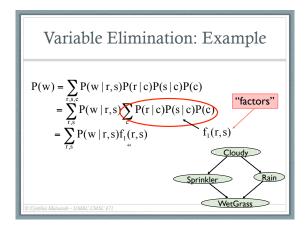
43

It's a conjunctive probability, not a conditional probability...

Iteratively

- · Move all irrelevant terms outside of innermost sum
- Perform innermost sum, getting a new term
- Insert the new term into the product

© Cynthia Matuszek – UMBC CMSC 671



Computing Factors							
R	s	с	P(R C)	P(S C)		P(C)	P(R C) P(S C) P(C)
Т	Т	Т					
Т	Т	F					
Т	F	Т					
Т	F	F					
F	Т	Т					
F	Т	F					
F	F	Т					
F	F	F					
				R	s	$f_1(\mathbf{R},\mathbf{S}) = \sum_{\mathbf{c}} \mathbf{P}(\mathbf{R} \mathbf{S}) \mathbf{P}(\mathbf{S} \mathbf{C}) \mathbf{P}(\mathbf{C})$	
				Т	Т		
				Т	F		
				F	Т		
w cyntnia matuszer – UMBC CMSC 0/1					F		



