
CMSC 671 (Introduction to AI) – Fall 2018
Homework 4 (98 points)
Turnin: Blackboard.

Please	 Parts	 I,	 II,	 III,	 and	 questions	 14-17	 together	 as	 a	 single	 PDF	 file	 named	 lastname_hw4.pdf	
(named	after	the	person	who	submits),	and	part	IV	as	zipped	up	.py	files.	

You	 are	 encouraged	 to	 work	 on	 this	 homework	 assignment	 in	 your	 project	 groups	 (no	 other	
groups).	If	you	do	so,	you	only	need	to	turn	 in	one	 solution,	with	everyone’s	name	in	the	file.	
Remember,	if	you	work	in	a	group,	you	MUST	work	on	the	problems	AS	a	group,	not	split	
up	the	work.	

PART	I.		LEARNING	IN	THE	WILD	(8	PTS.)	
Assignment:	Consider	the	problem	faced	by	a	robot	trying	to	figure	out	which	of	the	objects	that	it	
can	see	are	manipulable	(small	enough	to	to	be	picked	up	and	handled).	(Maximum:	300	words)		

1. Explain	how	this	problem	fits	into	the	general	learning	model.		

2. Describe	the	percepts	(sensor	inputs)	and	actions	of	the	robot.	

3. Describe	the	types	of	learning	the	robot	must	do.	

4. Describe	the	subfunctions	the	robot	is	trying	to	learn	in	terms	of	inputs,	outputs,	and	
available	training	data.	

PART	II.	DECISION	TREE	LEARNING	(30	PTS.)	
Consider	the	training	examples	shown	in	the	following	table	of	data	instances	for	a	binary	
classification	problem	with	three	attributes.	

Instance	 a1	 a2	 a3	 Class	
X1	 T	 T	 1.0	 +	
X2	 T	 T	 6.0	 +	
X3	 T	 F	 5.0	 -	
X4	 F	 F	 4.0	 +	
X5	 F	 T	 7.0	 -	
X6	 F	 T	 3.0	 -	
X7	 F	 F	 8.0	 -	
X8	 T	 F	 7.0	 +	
X9	 F	 T	 5.0	 -	

	

Assignment:	Answer	the	following	questions	about	Table	1,	showing	all	work.	

5. What	is	the	entropy	of	this	collection	of	training	examples?	

6. What	are	the	information	gains	of	a1	and	a2	relative	to	these	training	examples?	

7. For	a3	(which	is	continuous),	compute	the	information	gain	for	every	possible	split.	

8. What	is	the	best	split	(among	a1,	a2,	and	a3)	according	to	the	information	gain?	

9. What	is	the	best	split	(between	a1	and	a2)	according	to	the	classification	error	rate?	

PART	III.	RESOLUTION	AND	FORMAL	LOGIC	(30	PTS.)	
We	are	going	to	represent	the	space	of	gardening	in	predicate	calculus	and	first-order	logic.	Use	the	
following	predicates:	
	

fertilized (x) x is fertilized.
in-season(x) x is planted in the correct season.
rooted(x) x is well rooted in the ground.
hardy(x) x is hardy (robust, sturdy, hard to kill).
die(x, t) x died during planting t.
survive(x, t) x survived planting t.
watered (x) x is watered well.
native(x) x is native to the area.

Where	arguments	x	implicitly	take	the	domain	of	all	plants,	and	arguments	t	takes	the	domain	of	all	
plantings.	(That	is,	you	don’t	need	to	include	predicates	like	plant(x).)	

Knowledge	Representation	(18	pts)	

Assignment:		

10. Represent	the	following	knowledge	base	in	first-order	logic.	(8	pts)		

a) Everything	that	is	hardy,	watered,	and	fertilized	will	be	well-rooted.	

b) Everything	that	is	well-rooted	will	survive	a	planting	if	it	is	in	season.	

c) A	plant	survives	a	planting	if	and	only	if	they	don’t	die.	

d) Every	native	plant	is	hardy.		

e) If	a	planting	isn’t	in	season,	every	plant	will	die	in	the	planting.	

f) My	inkberry	is	a	native	plant.	

g) My	holly	survived	the	fall	planting.	

h) I	fertilize	my	inkberry.		

11. Convert	the	KB	to	conjunctive	normal	form.	(Hint:	you	will	need	to	define	three	constants,	in	
addition	to	the	predicates	above	and	variables	x	and	t.)	(8	points)		

12. Express	the	negation	of	this	statement:	(inkberry) → survive(inkberry, fall-planting)	
	in	conjunctive	normal	form.	(2	pts)	

Proving	(12	points)		

Assignment:	Prove	that	(inkberry) → survive(inkberry,	fall-planting).		

13. Adding	the	negated	goal	to	the	KB	and	using	resolution	refutation	to	prove	that	it	is	true.	
You	may	show	your	proof	as	a	series	of	sentences	to	be	added	to	the	KB	or	as	a	proof	tree.	In	
either	case,	you	must	clearly	show	which	sentences	are	resolved	to	produce	each	new	
sentence,	and	what	the	unifier	is	for	each	resolution	step.		

PART	IV.	FORGING	A	PATH	(30	PTS.)	

The General Idea

We	 are	 extending	 the	 code	 we	 have	 written	
previously	to	solve	path-finding	problems.	As	before,	
the	agent	will	need	to	try	to	 find	a	path	between	the	
start	and	goal	positions.	There	are	two	major	changes	
to	consider:	

• Walls.	We	are	introducing	an	additional	type	
of	block,	“Wall,”	which	cannot	be	moved	
through.	

• Observability.	The	agent	can	only	perceive	the	
eight	squares	directly	surrounding	it.	The	
agent	also	cannot	see	through	walls_(in	Figure	1,	
(0, 7)	will	never	be	observable.)	

• Optimality.	The	agent	will	be	looking	for	a	
good	path,	but	not	necessarily	optimal.	

You	should	extend	your	existing	 code	 to	 read	 in	and	
solve	 puzzles	 of	 the	 type	 described.	 While	 the	
complete	board	will	be	passed	 in,	 the	agent	does	
not	know	the	complete	board,	and	does	not	know	
where	 the	goal	 state	 is	until	 finding	 it	(see	Figure	
2).	This	means	that	you	will	have	to	use	some	form	of	
local	search	(we’ll	use	beam	search)	to	choose	a	path;	
furthermore,	the	agent	must	interleave	exploring	the	space	with	expanding	the	search	tree.	

Write	a	program	to	read	in	and	solve	puzzles	of	the	type	described	above.	The	puzzle	may	be	of	any	
size,	will	always	be	square,	and	will	have	a	non-random	selection	of	path,	sand,	wall,	and	mountain	
cells.	The	goal	of	the	puzzle	is	to	move	your	agent	from	the	starting	cell	to	the	goal	cell.	S	and	G	may	
be	any	cell.		

Details

You	may	assume:	

• The	size	of	the	square	is	between	7x7	and	50x50.	
• The	agent	may	only	move	one	square	at	a	time	(not	diagonally).	
• There	will	always	be	some	non-blocked	path.	
• Agents	may	backtrack.	(They	will	have	to,	in	fact.)	

• The	landscape	is	static	(no	cells	will	ever	change	once	observed).	

Assignment:	Write	 a	 function	 called	 solve	 which	 takes	 a	 matrix	 (the	 problem)	 and	 two	 tuples	
(start	and	goal),	 and	 tries	 to	 find	a	path	 from	the	start	 state	 to	 the	goal	 state.	Your	solver	should	
take	 these	 values,	 and	 return	 (not	 print)	 a	 string	 containing	 a	 list	 of	 moves.	 Moves	 should	 be	
represented	by	the	capital	letters	N,S,E,W	for	north,	south,	east,	and	west	moves.	Note	that	because	
the	space	is	not	fully	observable,	the	agent	will	backtrack	occasionally;	an	agent	in	(5,5)	in	Figure	1	
might	well	move	west,	then	east.		

Figure	1:	an		explored	7x7	map	

Figure	2:	the	first	two	hill-climbing	timesteps	

Please	don’t	print	anything	inside	the	function.	

Implement	your	solution	to	this	problem	as:	local	beam	search,	using	any	heuristic	you	like.	(Hint:	
make	sure	your	heuristic	is	abstracted	well,	as	it	will	change	in	the	project.)	Because	we	are	using	
beam	search	and	not	looking	for	an	optimal	solution,	your	code	should	run	much	 faster	than	your	
A*	implementation.	

Hints:

The	 biggest	 difference	 is	 that	 the	 agent	must	 interleave	 exploring	 the	 space	with	 expanding	 the	
search	tree;	this	means	you	can’t	simply	return	the	best	path	found,	but	must	return	the	path	the	
agent	actually	traverses.	

	

Assignment:	Write	up	answers	to	the	following	in	your	PDF:	
14. What	heuristic	did	you	use	for	choosing	what	path	to	explore	next?	

15. What	size	beams	did	you	experiment	with?	What	beam	size	did	you	use,	and	why?	

16. What	was	the	easiest	thing	about	coding	this	up?	The	hardest?	

17. How	many	times	did	your	group	meet	in	solving	this?	How	well	did	it	go?	

	

	

