
CMSC 671 (Introduction to AI) – Fall 18
Homework	2:	Search	(75	points)	
Turnin:	Blackboard.	
Please	submit	Part	I	as	a	single	PDF	file	named	yourlastname_hw2.pdf.	
Please	submit	Part	II	as	a	.py	file,	named	yourlastname_hw2.py.	

All	files	must	start	with	your	last	name	and	have	your	full	name	in	the	file,	at/near	the	top.		

PART	I.		NAVIGATING	IN	TERRAIN	(SEARCH	SPACES	AND	STATES)	(35		PTS)	

The General Idea

Consider	 navigating	 a	 3 x	 3	 space,	 shown	 right.	 There	 are	
three	kinds	of	terrain,	each	of	which	takes	some	amount	of	
effort	 to	 traverse:	 entering	 a	 “path”1	cell	 costs	 10	 calories,	
entering	 a	 “sand”	 cell	 costs	 30	 calories,	 and	 entering	 a	
“mountain”	 cell	 costs	 100	 calories.	 Your	 agent	 starts	 at	
coordinates	 (1,0),	 as	 shown,	 and	 is	 trying	 to	 reach	 square	
(2,2)	(marked	!).	The	agent	cannot	move	diagonally.	

Assignment:	 Answer	 the	 following	 questions	 about	 the	
representation	of	this	puzzle.	

1. How	would	you	represent	this	as	a	search	problem?		
Your	answer	should	be	complete	and	relatively	formal.	(See	the	water	jug	and	Sudoku	examples	
from	lecture.)	10	pts	
(a) Describe	the	state	space.	

(b) Provide	a	table	of	actions/operators,	including	constraints.	Spell	these	out—don’t	
provide	“classes”	of	actions	or	constraints.		

(c) What	is	your	goal	test?	

2. How	many	unique,	legal,	reachable	states	are	there	in	this	search	space?	3	pts	

3. Draw	the	first	three	levels	of	the	search	tree.	5	pts	

4. If	you	were	using	heuristic	search,	what	and	why?	5	pts	

(a) What	admissible	heuristic	would	you	choose	for	evaluating	states?	

(b) Explain	how	you	know	it	is	admissible.	

5. Choose	algorithms	for	this	navigation	problem	in	general	(that	is,	with	any	possible	
arrangement	of	sand,	paths,	and	mountains).	In	full	sentences,	justify	your	answers	in	terms	of	
space	and	time	complexity,	completeness,	and	optimality.	6	pts	
(a) Uninformed	search:	

(b) Informed	search:	

(c) Local	search:	

6. If	the	navigation	square	could	be	any	size	(1044 x	1044,	for	example),	what	algorithm	(from	any	
of	the	above)	would	you	choose,	and	why?	6	pts	

																																								 																					
1	pixabay.com/en/road-crossing-crosswalk-street-304283,	pixabay.com/en/sand-beach-island-palm-sun-tree-304525,	
pixabay.com/en/mountain-peak-snow-summit-304054	

PART	II.	PATH-FINDING	(40	PTS.)	

The General Idea

Write	 a	 program	 to	 read	 in	 and	 solve	 puzzles	 of	 the	 type	
described	above.	The	puzzle	may	be	of	any	size,	will	always	be	
square,	 and	 will	 have	 a	 random	 selection	 of	 path,	 sand,	 and	
mountain	 cells.	 The	 goal	 of	 the	 puzzle	 is	 to	 move	 your	 agent	
from	a	starting	cell	to	a	goal	cell.	S	and	G	may	be	any	cell.		

The	agent’s	task	is	to	find	either	the	lowest-cost	path	from	S	to	
G,	 or	 any	 path	 with	 a	 cost	 that	 is	 less	 than	 or	 equal	 to	 300	
calories.	 In	 the	 puzzle	 given	 in	 Part	 I,	 any	 non-looping	 path	
would	be	a	 correct	 solution;	 in	 the	example	given	 to	 the	 right,	
there	is	only	one	correct	solution.	

Some	puzzles	of	this	form	may	have	multiple	optimal	solutions.	

Details

You	may	assume:	

• The	size	of	the	square	is	nonzero.	
• The	agent	may	only	move	one	square	at	a	time	(not	diagonally).	
• The	array	is	always	0-indexed.	
• Tuples	are	always	in	(x,y)	order.	(horizontal,	vertical/row,	column)	

You	may	not	assume:	

• The	agent	is	unable	to	backtrack.	(The	search	may	and	probably	will,	though!)	
• Start	or	goal	states	will	always	be	along	an	edge.	
• The	start	state	will	be	different	from	the	goal	state.	

Assignment:	Write	 a	 function	 called	 solve	which	 takes	 a	matrix	 (the	 problem)	 and	 two	 tuples	
(start	and	goal),	and	 tries	 to	 find	a	path	 from	the	start	 state	 to	 the	goal	 state	 that	 is	either	≤	300	
calories,	or—if	 it	 is	more	expensive	than	300	calories—is	optimal	(lowest	possible	cost).	Our	two	
examples	would	be	passed	in	as	follows:	

	 >>>	solve((0,1),	(2,2),	[[p,p,p],	[p,m,p],	[s,s,s]])	

	 >>>	solve((0,0),	(2,2),	[[m,m,m,s],	[m,m,m,s],	[m,m,m,s],	[p,p,p,p]])	

Your	 solver	 should	 take	 these	 values,	 and	 return	 (not	 print)	 a	 string	 containing	 a	 list	 of	moves.	
Moves	should	be	represented	by	the	capital	letters	N,S,E,W	for	north,	south,	east,	and	west	moves.	
The	optimal	solution	to	the	3 x	3	board	would	be	returned	as	“NEESS”.	Please	don’t	print	anything	
inside	the	function;	everything	must	be	in	the	return	value.	

Implement	your	solution	to	this	problem	as:	A*	search.	Use	the	heuristic	you	gave	in	Part	I.	You	may	
use	any	of	the	optimizations	we	covered	in	class	(e.g.,	keeping	track	of	previously	expanded	nodes).	

Hints:

I	recommend	writing	two	kinds	of	tests.	(1)	Unit	tests,	which	have	known	answers	and	can	be	rerun	
as	 you’re	 writing	 to	 make	 sure	 your	 code	 is	 performing	 as	 expected.	 (2),	 A	 function	 that	 can	
generate	random	problems	of	various	sizes	and	testing	your	code	against	those,	ranging	from	2x2	
to	at	least	100x100,	which	will	let	you	make	sure	your	code	doesn’t	crash	on	various	edge	cases	and	
takes	a	reasonable	amount	of	time.	

