
Unit Testing

Good code
• Good code is:

• Correct

• Easy to navigate and to understand

• Easy to modify

• This means that good code is:

• Composed of largely independent, single-purpose methods

• Simple and straightforward, not overly clever

• Well-documented

• Supported by an extensive test set

2

Unit testing
• A unit test is a test of a single method or function
• Unit tests may be performed individually, or in any

order
• Unit testing results in:

• Code with fewer errors
• Methods that are single purpose
• Methods that are largely independent of one another
• Programs that are easier to maintain and modify

• Unit tests also provide examples of what each method is
supposed to do

3

Philosophy
• Thorough testing is desirable, but testing is work
• The more work it is, the less it will get done
• Therefore, testing must be made as simple and easy as possible
• Conclusions:

• Use a testing framework that does most of the work for you
• Running all the tests should be as simple as a single button click
• When all the tests pass, the user should see only a success

indicator (“OK” in IDLE, green bar in other IDEs)
• Therefore, methods being tested should not require any input

and should not provide any output
• Failed tests should indicate exactly what and how a method

failed

4

import statements
• Larger programs are often written in more than one file (or module)

• Unit tests are usually written in a different module than the module being tested

• To use functions that are in a different module, you need to import that module

• import statements should be the first lines in your module

• For example, suppose you want to call a function named myfun in a file
named myprog.py -- you can do this in either of two ways:

1. At the top of the program, say import myprog  
In the code, call the function by saying myprog.myfun(args)

2. At the top of the program, say from myprog import *  
In the code, call the function by saying myfun(args)

5

Structure of the test file
• The test file has a moderately complex structure

• import unittest  
from name_of_module import *  
 
class NameOfClass(unittest.TestCase):  
 # You can define variables  
 # and functions here  
 
 # Test methods go here--  
 # the name of each test method  
 # begins with “test_”  
 
unittest.main()

6

Structure of test methods
• Each test has a name beginning with test_ and has one parameter named self

• Inside the test function is just normal Python code--you can use all the usual
Python statements (if statements, assignment statements, loops, function calls,
etc.) but you should not do input or output

• I/O in tests will just slow down testing and make it more difficult

• For the same reason, the code being tested should also be free of I/O

• Here are the three most common tests you can use:

• self.assertTrue(boolean_expression_that_should_be_true)

• self.assertFalse(boolean_expression_that_should_be_false)

• self.assertEqual(first_expression, second_expression)

• Of these, self.assertEqual gives you more information when it fails,
because it tells you the value of the two expressions

7

Example code to be tested

• This is on file parity.py: 
 
def is_even(n):  
 """Test if the argument is even"""  
 return n % 2 == 0  
 
def is_odd(n):  
 """Test if the argument is odd"""  
 return n % 2 == 1

8

Example test and result
• import unittest  
from parity import *  
 
class TestEvenOrOdd(unittest.TestCase)  
 
 def test_even(self):  
 self.assertTrue(is_even(6))  
 self.assertFalse(is_even(9))  
 
unittest.main()

• >>> ====================== RESTART ====================== 
>>>  
.  

Ran 1 test in 0.032s  
 
OK  
>>>

9

Example of test failure
• Suppose we do: self.assertTrue(is_even(9))

• >>> =========================== RESTART ===========================  
>>>  
F  
===
===  
FAIL: test_even (__main__.TestEvenOrOdd)  

Traceback (most recent call last):  
 File "/Users/dave/Box Sync/Programming/Python3_programs/
parity_test.py", line 8, in test_even  
 self.assertTrue(is_even(9))  
AssertionError: False is not true  

Ran 1 test in 0.041s  
 
FAILED (failures=1)  
>>>

10

Another example failure
• def test_arithmetic(self):  
 n = 0  
 for i in range(0, 10): # do ten times  
 n = n + 0.1  
 self.assertEqual(1.0, n)

• AssertionError: 1.0 != 0.9999999999999999

• Moral: Never trust floating point numbers to be exactly equal

• To test floating point numbers, don’t use assertEquals(x, y)

• Instead, use assertAlmostEqual(x, y) or
assertAlmostEqual(x,y,d), where d is the number of digits
after the decimal point to round to (default 7)

11

Testing philosophy
• When testing, you are not trying to prove that your code is correct--you

are trying to find and expose flaws, so that the code may be fixed

• If you were a lawyer, you would be a lawyer for the prosecution, not for
the defense

• If you were a hacker, you would be trying to break into protected systems
and networks

• A white hat hacker tries to find security flaws in order  
to get the company to fix them--these are the “good guys”

• A black hat hacker tries to find security flaws in  
order to exploit them--these are the “bad guys”

12

Testing “edge” cases
• Testing only the simple and most common cases is

sometimes called garden path testing

• All is sweetness and light, butterflies and flowers

• Garden path testing is better than nothing

• Of course, you need to test these simple and common
cases, but don’t stop there

• To find the most flaws, also test the “edge” cases, those
that are extreme or unexpected in one way or another

13

Example “edge” case
• Recall our code for is_odd: 
def is_odd(n):  
 """Test if the argument is odd"""  
 return n % 2 == 1

• Here is another test for it:  
def test_odd_when_negative(self):  
 self.assertTrue(is_odd(-3))  
 self.assertFalse(is_odd(-4))

• What is the result of -3 % 2? Is it 1, or is it -1?

• In either event, here is some better code:  
def is_odd(n):  
 """Test if the argument is odd"""  
 return not is_even(n)

14

More test methods
• The following are some of the methods available in test methods:

• assertEqual(a, b), assertEqual(a, b, message)
• assertNotEqual(a, b), assertNotEqual(a, b, message)
• assertTrue(x), assertTrue(x, message)
• assertFalse(x), assertFalse(x, message)
• assertIs(a, b), assertIs(a, b, message)
• assertIsNot(a, b), assertIsNot(a, b, message)
• assertIsNone(x), assertIsNone(x, message)
• assertIsNotNone(x), assertIsNotNone(x, message)
• assertIn(a, b), assertIn(a, b, message)
• assertNotIn(a, b), assertNotIn(a, b, message)
• assertIsInstance(a, b), assertIsInstance(a, b, message)
• assertNotInstance(a, b), assertNotInstance(a, b, message)
• assertRaises(exception, function, arg1, ..., argN)

• Typically b and x are calls to the method being tested, while a is the expected result.

15

The setUp method
• If a method changes a globally accessible value, rather than just

returning a value, then the order in which methods are called is
important

• Unit tests may be performed individually, or in any order

• Good programming style minimizes the use of global variables

• If you define a setUp(self) method, it will be called before each
and every test method

• The job of setUp is to reset all global values to a known state

• In the setUp method, don’t forget to declare your variables to be
global

16

Interrelated methods
• In general, a unit test should test just one method

• You might have multiple tests for the same method, to test
different aspects of it

• Some methods are interrelated and need to be tested together

• For example, pushing something onto a stack and popping
something from a stack

• For more complicated interactions, you can create “mock
objects”

• This is an advanced topic, not covered here

17

How much is enough?
• Rule: Write at least one test method for each computational method

• You can write more than one test method (with different names)
for methods that do more than one thing, or handle more than one
case

• There is no need for redundant testing; if is_odd works for both 5
and 6, it probably also works for 7 and 8

• ...but it may not work for negative numbers, so test those as well

• There is no need to write unit tests to see if Python itself works

• Rule: Test every case you can think of that might possibly go wrong

18

Do it backwards and iteratively!
• The obvious thing to do is to write the code first, then write the tests for the

code

• Here is how it’s done by experts at writing testable code:

1. Begin by writing a simple test for the code you plan to write

2. Write the code

3. Run the test, and debug until everything works (remember, errors might
be in the test itself)

4. Clean up (refactor) the code, making sure that it still works

5. If the code doesn’t yet do everything you want it to do, write a test for the
next feature you want to add, and go to step 2.

• This is approach is called Test Driven Development (TDD)

19

Why is TDD better?
• When you start with the code, it is easy to write a function

that is too complicated and difficult to test

• Writing the test first helps clarify what the code is supposed
to do and how it is to be used

• Writing the test first helps keeps functions small and single-
purpose

• TDD promotes steady, step-by-step progress, and helps
avoid long, painful debugging sessions

• TDD simplifies and encourages code modification when
updates are needed

20

Refactoring
• Refactoring is changing the code to make it better (cleaner, simpler, easier to

use) without changing what it does

• Refactoring should be a normal part of your programming

• Each time you get a function to work correctly (or even sooner), you should
see if there’s a way you can make it better

• Common refactorings include:

• Changing the name of variables or functions to better express their meaning

• Eliminating useless or redundant code (such as if success == True:)

• Breaking a function that does two things into two single-purpose functions

• Simplifying a complex arithmetic expression by giving names to the parts,
then using those names in the expression

21

22

http://elstarit.nl/?p=157

Special code in the program
• Programs typically have a method named main which is the starting point for

everything that happens in the program

• The program can be started automatically when it is loaded by putting this
as the last line in the program:  
 main()

• If you are testing the individual methods of the program, you don’t want to
start the program automatically

• The following “magic” code, placed at the end of the program, will call the
main method to start the program if and only if you run the code from this file:

• if __name__ == ‘__main__':  
 main()

• If you run tests from a separate file, the above code does not call the main
method to start the program running

23

The End

24

http://www.adamslair.net/blog/?p=1463

