Today’s Class

Probabilistic Reasoning
AlI Class 9 (Ch. 13) Probability theory

Probability notation

+ Using independence / finding posterior probability
factoring for a proposition, given
« From sources of evidence | observed evidence.
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Bayesian inference
‘%:h * From the joint distribution | Probabilistic inference:
A
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Today’s Class Bayesian Reasoning

‘We don’t (can’t!) know everything about most problems. Posteriors and priors

» Most problems are not: What is inference?

* Deterministi . .
elerministic What is uncertainty?
* Fully observable

. When/wh; babilisti ing?
* Or, we can’t calculate everything. CIVWRY USE probabIlistic reasoning

+ Continuous problem spaces What is induction?

Probability lets us understand. quantify, and work with What is the probability of two independent events?
this uncertainty. . L o .
Frequentist/objectivist/subjectivist assumptions
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Sources of Uncertainty Decision Making with Uncertainty

. Uncertai‘; inputs * Uncertain outputs « Rational behavior: for each possible action,
* Missing data « Default reasoning (even : -
. Noisy data deduction) is uncertain Identify possible outcomes
. + Compute probability of each outcome
* Uncertain knowledge - Abduction & induction c ili £ each
« >1 cause > >1 effect inherently uncertain ompute utility of each outcome
+ Incomplete knowledge of « “goodness” or “desirability” per some formally specified definition

I R § lete deducti oqs . o1s
conditions or effects ncomp ete decuctive - Compute probability-weighted (expected) utility of

inference can be uncertain
Incomplete knowledge of possible outcomes for each action

causality
- Probabilistic effects « Select the action with the highest expected utility

(principle of Maximum Expected Utility)
Probabilistic reasoning only gives probabilistic results

H 13 H ”
(summarizes uncertainty from various sources) Also the d.eflnl.t ion o.f_ ratlona.l
5 for deterministic decision-making!




fffﬂ- “% Probability

‘World: The complete set of possible states

Random variables: Problem aspects that take a value
“The number of blue squares we are holding,” B
“The combined value of two dice we rolled,” C

Event: Something that happens

Sample Space: All the things (outcomes) that could
happen in some set of circumstances
Pull 2 squares from envelope A: what is the sample space?
How about envelope B?

‘World, redux: A complete assignment of values to variables

Why Probabilities Anyway?

3 simple axioms => all rules of probability theory*

1. All probabilities are between 0 and 1.
0<P@s=1

. Valid propositions (tautologies) have probability 1,
and unsatisfiable propositions have probability 0.
P(true) =1
P(false) =0

. The probability of a disjunction is:
P(a v b)=P(a) + P(b)— P(a A b)

Probability Theory

Random variables: Alarm (4), Burglary (B),
Domain: possible values Earthquake (E)

Atomic event: Boolean, discrete, continuous
Complete specification of A=true A B=true A E=false:
astate alarm A burglary A —earthquake

Prior probability: P(B) = 0.1
Degree of Pelief without P(A, B) =
any new evidence

Joint probability: alarm

Matrix of combined burglary | 0.09
probabilities of a set of bursl o1
variables, P(4 | B) ~burglary :
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Basic Probability .

Each P is a non-negative value in [0,1]
P({1,1}) = 1/36

Total probability of the sample space is 1
P({1,1}) + P({1,2}) + P({1,3}) + .. + P({6,6}) =1

For mutually exclusive events, the probability for at least one
of them is the sum of their individual probabilities
P(sunny) V P(cloudy) = P(sunny) + P(cloudy)

Experimental probability: Based on frequency of past events

Subjective probability: Based on expert assessment
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Compound Probabilities

Describe independent events
Do not affect each other in any way

Joint probability of two independent events A and B
P(A 1 B) = P(A) * P(B)
Union probability of two independent events A anhd B
P(A U B)=PA)+P(B)-PANB)
=P(A) + P(B) - (P(A) * P(B))
Pull two squares from envelope A. What is the
probability that they are BOTH red?
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Probability Distributions

A distribution is the probabilities of all possible
values of a random variable

Ex: weather can be sunny, rainy, cloudy, or snowy
P(Weather = sun) = 0.6
P(Weather = rain) = 0.1
P(Weather = cloud) = 0.29
P(Weather = snow) = 0.01
P(Weather) = <0.6, 0.1, 0.29, 0.01> < shortcut

P(Weather): probability distribution on Weather
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Probability Theory: Definitions

» Conditional probability: Probability of some effect
given that we know cause(s)

Example: P(alarm|burglary)

* (Technically, we only know b is true, not causal, but...)
* Computing it:

P(a A b)

P(a|b) = X0)

* P(b): normalizing constant

(Later we’ll call this alpha)
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Try It... burglary

= burglary

* Cond’l probability P(AIB) =7
P(effect, cause[s])
P(alb)=P(a A b)/ P(b)
P(b): normalizing
constant (1/c)

* Product rule: P(BAA)= 2
P(a n b)=P(alb) P(b)

P(BIA) = 2

* Marginalizing:
P(B)=Z,P(B,a)
P(B)=Z,P(B|a) P(a)
(conditioning)

Exercise: Inference from the Joint

* Queries: what is... J Where do these

The prior probability (knowing not
The prior probability of study?

The conditional probability of preparer  ven study and
smart?

come from?

P(smart A
study A prep)

prepared

-prepared

Probability Theory: Definitions

* Product rule:
P(aa b) =P(a]| b) P(b)

* Marginalizing (summing out):
Finding distribution over one or a subset of variables
Marginal probability of B summed over all alarm states:
P(B) = 3,P(B, o)

» Conditioning over a subset of variables:
P(B) = %,P(B| a) P(a)

Example: Inference from the Joint

e P(BIA)=aP(B,A) A
=a [P(B,A,E) + P(B,A,—E) E
=a [(.01, .01) + (.08, .09)]
= [(.09,.1)]

Since
PBIA)+P(-BlA)=1,a=1/(0.09+0.1)=5.26
(ie.,P(A)=1/a=0.19)

P(B1A)=0.09 *526=0474

P(-B1A)=0.1*526=0.526

-A

-E E -E
0.01 | 0.08 | 0.001
0.01 | 0.09 | 0.01

Exercise:
Inference from the joint

P(smart A smart —smart
study A prep)| study | -study | study | -study
prepared| 432 .16 .084 .008
-~prepared| .048 .16 .036 .072

Queries:
‘What is the prior probability of smarf?
‘What is the prior probability of study?

‘What is the conditional probability of prepared, given study
and smart?

P(smart) = 432 +.16 + .048 + .16 = 0.8

19




Exercise:
Inference from the joint

P(smart A smart —smart
study A prep) | study | -study | study | -study
prepared | 432 .16 .084 .008
-prepared | .048 .16 .036 .072

Queries:
‘What is the prior probability of smart?
‘What is the prior probability of study?

‘What is the conditional probability of prepared, given study
and smart?

P(study) = .432 + .048 + .084 + .036 = 0.6

Independence: 1L

Independent: Two sets of propositions that do
not affect each others’ probabilities

Easy to calculate joint and conditional probability
of independence:

(A, B) © P(4 A B) = P(A) P(B) or P(A | B) = P(4)

Examples:

A = alarm
B = burglary
E = earthquake

M = moon phase
L =light level

ALBLE=f

MLL=f

AlLM=t

Exercise: Independence

P(smart A
study A prep)

prepared

-prepared

* Queries:

Is smart independent o
« P(smart|study) = P(smart)

Is prepared independent
* Plprep|study) = P(prep)

0.432 +0.48

0.16 +0.16

0.084 + 0.008

0.036 + 0.72

Exercise:
Inference from the joint

P(smart A smart —smart
study A prep) | study | -study | study | -study
prepared|| 432]| .16 084 .008
-~prepared| .048 .16 .036 .072

Queries:

‘What is the conditional probability of prepared, given
study and smart?

P(prep | smart,study) = P(prep, smart, study)/P(smart, study)
=.432 /(432 + .048)
=0.9

Independence Example

» {moon-phase, light-level} 1L {burglary, alarm, earthquake}
But maybe burglaries increase in low light
But, if'we know the light level, moon-phase 1 burglary
Once we're burglarized, light level doesn’t affect whether
the alarm goes off; {light-level} L {alarm}
* We need:
A more complex notion of independence

Methods for reasoning about these kinds of (common)
relationships

Conditional Probabilities

» Describes dependent events
Affect each other in some way
« Typical in the real world

« If we know some event has occurred, what does that tell
us about the likelihood of another event?




Conditional Independence

* moon-phase and burglary are conditionally
independent given light-level
That is, M 1 B if we already know L

» Conditional independence is:
‘Weaker than absolute independence
Useful in decomposing full joint probability distributions

Exercise: Conditional
Independence

P(smart A smart —smart
study A prep) | study | -study | study | -study
prepared| 432 .16 .084 .008
—prepared| .048 .16 .036 .072

* Queries:
Is smart conditionally independent of prepared,
given study?

Is study conditionally independent of prepared,
given smart?

Naive Bayes Algorithm

» Estimate the probability of each class:
Compute the posterior probability (Bayes rule)

P(c)P(D|c;)

Pl | Dy = =

Choose the class with the highest probability

» Assumption of attribute independency (Naive
assumption): Naive Bayes assumes that all of the
attributes are independent.
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Conditional Independence

Absolute independence: A 1L B, if:
P(A A B) = P(A) P(B)
Equivalently, P(A) = P(A | B) and P(B) =P(B 1 A)

A and B are conditionally independent given C if:
P(AABIC)=P(AIC)P(BIC)

This lets us decompose the joint distribution:
P(AABAC)=P(AIC)PBIC)P(C)

‘What does this mean?

Bayes’ Rule

Derive the probability of an event given another event

Assumption of attribute independency (Naive assumption): Naive
Bayes assumes that all astributes are independent.

Bayes’ rule is derived from the product rule: R&N 495
P(Y1X)=P(X1Y) P(Y)/ P(X)

Often useful for diagnosis. If we have:
X = (observed) effects, ¥ = (hidden) causes
A model for how causes lead to effects: P(X | ¥)
Prior beliefs about frequency of occurrence of effects: P(Y)

‘We can reason abductively from effects to causes:
P(Y1X)

Bayesian Inference

* In the setting of diagnostic/evidential reasoning

H, pH) hypotheses

E, E; E evidence/manifestations

J m

Know: prior probability of hypothesis ~ P(H,)
conditional probability P(E;|H)
Want to compute the posterior probability P(H, | E)
» Bayes’ theorem (formula 1):
P(H,|E,)=P(H,)P(E,|H,)! P(E,)
31




Simple Bayesian Diagnostic Reasoning

* Knowledge base:
Evidence / manifestations: E,, ... E_,
Hypotheses / disorders: ~ Hj, ... H,

* E; and H; are binary; hypotheses are mutually exclusive (non-
overlapping) and exhaustive (cover all possible cases)

Conditional probabilities: P(E; | Hy),i=1,...n0;j=1,...m
* Cases (evidence for a particular instance): E;, ..., E,

* Goal: Find the hypothesis H; with the highest posterior
Max, P(H, | E,, ..., E,)

Bayesian Diagnostic Reasoning 11

* Bayes’ rule says that
PH; | Ey, ..., E)=PE, ...,E, | H)PH) / PE,, ...,E.)

» Assume each piece of evidence E; is conditionally
independent of the others, given a hypothesis H;, then:
PE,, ..., Ey | H) = H1j=1 PE; | Hy)
« If we only care about relative probabilities for the H,

then we have:
P(H; | Ey, ..., E,)) = a P(H) Hljzl P(E; | H)

Bayes Example: Diagnosing Meningitis
|P(H,|E))= P(H)P(E,|H,)] P(E,)|
Stiff neck is a symptom in 50% of meningitis cases

Meningitis (m) occurs in 1/50,000 patients
Stiff neck (s) occurs in 1/20 patients

* Then
P(s|m) =0.5, P(m) = 1/50000, P(s) = 1/20
P(m[s) = (P(s|m) P(m))/P(s)
=(0.5x 1/50000) / 1/20 =.0002

» So we expect that one in 5000 patients with a stiff
neck to have meningitis.

Priors

* Four values total here:
P(HIE) = (P(E|H) * P(H)) / P(E)

* P(H|E) — what we want to compute

* Three we already know, called the priors
PEIH)

P(H
() (In ML we use the training
P(E) set to estimate the priors)

Bayes Example: Diagnosing Meningitis

|P(H,|E) = P(H)P(E,|H,)| P(E,)|

Your patient comes in with a stiff neck.

Is it meningitis?

Suppose we know that
Stiff neck is a symptom in 50% of meningitis cases
Meningitis (m) occurs in 1/50,000 patients
Stiff neck (s) occurs in 1/20 patients

So probably not. But specifically?

Analysis of Naive Bayes Algorithm

» Advantages:
Sound theoretical basis
‘Works well on numeric and textual data
Easy implementation and computation
Has been effective in practice (e.g., typical spam filter)




Limitations of Simple
Bayesian Inference

Cannot easily handle multi-fault situations, nor cases
where intermediate (hidden) causes exist:

Disease D causes syndrome S, which causes correlated
manifestations M; and M,

Consider a composite hypothesis H; A H,, where H, and
H, are independent. What is the relative posterior?
P(H, AH, | E,, ..., Ey) = @ P(Ey, ..., By, | Hy A Hy) P(H, A Hy)
=a P(E,, ..., E, | H, A H,) P(H,) P(H,)
= a I P(E,, | H, A H,) P(H,) P(H,)

How do we compute P(E; | H; A Hy) 7?
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Limitations of Simple Bayesian Inference IT

Assume H1 and H2 are independent, given E1, ..., Ej?
P(H, AH, | E,, ...,E)=P(H, | E;, .., E) P(H, | E,, ..., E)

This is a very unreasonable assumption
Earthquake and Burglar are independent, but not given Alarm:

+ P(burglar | alarm, earthquake) << P(burglar | alarm)

Simple application of Bayes’ rule doesn’t handle causal chaining:
A: this year’s weather; B: cotton production; C: next year’s cotton price
A influences C indirectly: A— B — C
P(C | B,A)=P(C | B)

Need a richer representation to model interacting hypotheses,

conditional independence, and causal chaining

Next time: conditional independence and Bayesian networks!
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