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Probabilistic Reasoning 
AI Class 9 (Ch. 13) 

Cynthia Matuszek – CMSC 671 

Based on slides by Dr. Marie desJardin and Dr. Tim Oates. Some material also adapted 
from slides by Dr. Matuszek @ Villanova University, which are based in part on 

www.csc.calpoly.edu/~fkurfess/Courses/CSC-481/W02/Slides/Uncertainty.ppt and 
www.cs.umbc.edu/courses/graduate/671/fall05/slides/c18_prob.ppt 
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Today’s Class 

•  Probability theory 

•  Probability notation 

•  Bayesian inference 
•  From the joint distribution 

•  Using independence / 
factoring 

•  From sources of  evidence 

3 

Probabilistic inference: 
finding posterior probability 
for a proposition, given 
observed evidence.

– R&N 490

Today’s Class 

We don’t (can’t!) know everything about most problems. 

•  Most problems are not: 
•  Deterministic 

•  Fully observable 

•  Or, we can’t calculate everything. 
•  Continuous problem spaces 

Probability lets us understand. quantify, and work with 
this uncertainty. 
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Bayesian Reasoning 

•  Posteriors and priors 

•  What is inference?  

•  What is uncertainty? 

•  When/why use probabilistic reasoning? 

•  What is induction? 

•  What is the probability of two independent events?  

•  Frequentist/objectivist/subjectivist assumptions 
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Probabilistic reasoning only gives probabilistic results 
(summarizes uncertainty from various sources) 

•  Uncertain inputs 
•  Missing data 

•  Noisy data 

•  Uncertain knowledge 
•  >1 cause à >1 effect 

•  Incomplete knowledge of  
conditions or effects 

•  Incomplete knowledge of  
causality 

•  Probabilistic effects 

•  Uncertain outputs 
•  Default reasoning (even 

deduction) is uncertain 

•  Abduction & induction 
inherently uncertain 

•  Incomplete deductive 
inference can be uncertain 

Sources of  Uncertainty 
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Decision Making with Uncertainty 

•  Rational behavior: for each possible action, 
•  Identify possible outcomes 

•  Compute probability of  each outcome 

•  Compute utility of  each outcome 
•  “goodness” or “desirability” per some formally specified definition 

•  Compute probability-weighted (expected) utility of  
possible outcomes for each action 

•  Select the action with the highest expected utility 
(principle of  Maximum Expected Utility) 
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Also	the	definition	of	“rational”	
for	deterministic	decision-making!	
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Probability 

•  World: The complete set of  possible states 

•  Random variables: Problem aspects that take a value 
•  “The number of  blue squares we are holding,” B 
•  “The combined value of  two dice we rolled,” C 

•  Event: Something that happens 

•  Sample Space: All the things (outcomes) that could 
happen in some set of  circumstances 
•  Pull 2 squares from envelope A: what is the sample space? 
•  How about envelope B? 

•  World, redux: A complete assignment of  values to variables 

A B
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Basic Probability 

•  Each P is a non-negative value in [0,1] 
•  P({1,1}) = 1/36 

•  Total probability of  the sample space is 1 
•  P({1,1}) + P({1,2}) + P({1,3}) + … + P({6,6}) = 1 

•  For mutually exclusive events, the probability for at least one 
of  them is the sum of  their individual probabilities 
•  P(sunny) ∨ P(cloudy) = P(sunny) + P(cloudy) 

•  Experimental probability: Based on frequency of  past events 

•  Subjective probability: Based on expert assessment 
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Why Probabilities Anyway? 

3 simple axioms à all rules of probability theory* 

1.  All probabilities are between 0 and 1. 
•  0 ≤ P(a) ≤ 1

2.  Valid propositions (tautologies) have probability 1, 
and unsatisfiable propositions have probability 0. 

•  P(true) = 1
•  P(false) = 0

3.  The probability of  a disjunction is: 
•  P(a ∨ b) = P(a) + P(b) – P(a ∧ b)

a∧b a b 

*Kolmogorov – en.wikipedia.org/wiki/Andrey_Kolmogorov 
De Finetti, Cox, and Carnap have also provided compelling arguments for these axioms CSC 4510.9010 Spring 2015. Paula Matuszek

Compound Probabilities 

•  Describe independent events 
•  Do not affect each other in any way 

•  Joint probability of  two independent events A and B 
 P(A ∩ B) = P(A) * P(B) 

•  Union probability of  two independent events A and B 
P(A ∪ B) = P(A) + P(B) - P(A ∩ B) 

                     = P(A) + P(B) - (P(A) * P(B)) 
Pull two squares from envelope A.  What is the 
probability that they are BOTH red? 
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What do these say?

a∧b a b 

•  Random variables:  
•  Domain: possible values 

•  Atomic event: 
•  Complete specification of  

a state 

•  Prior probability: 
•  Degree of  belief  without 

any new evidence 

•  Joint probability: 
•  Matrix of  combined 

probabilities of a set of 
variables, P(A|B) 

•  Alarm (A), Burglary (B), 
Earthquake (E) 
•  Boolean, discrete, continuous 

•  A=true ∧ B=true ∧ E=false: 
•  alarm ∧ burglary ∧ ¬earthquake 

•  P(B) = 0.1 
•  P(A, B) = 

Probability Theory 
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alarm ¬ alarm
burglary 0.09 0.01

¬ burglary 0.1 0.8

Probability Distributions 

•  A distribution is the probabilities of  all possible 
values of  a random variable 

•  Ex: weather can be sunny, rainy, cloudy, or snowy 
•  P(Weather = sun) = 0.6 
•  P(Weather = rain) = 0.1 
•  P(Weather = cloud) = 0.29 
•  P(Weather = snow) = 0.01 
•  P(Weather) = <0.6, 0.1, 0.29, 0.01>   ß shortcut 

•  P(Weather): probability distribution on Weather 
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Probability Theory: Definitions 

•  Conditional probability: Probability of  some effect 
given that we know cause(s) 

•  Example: P(alarm|burglary) 
•  (Technically, we only know b is true, not causal, but…) 

•  Computing it: 

•  P(a | b) =   

•  P(b): normalizing constant 
•  (Later we’ll call this alpha) 
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P(a ∧ b) 
P(b) 

Probability Theory: Definitions 

•  Product rule: 
•  P(a ∧ b) = P(a | b) P(b) 

•  Marginalizing (summing out): 
•  Finding distribution over one or a subset of  variables 
•  Marginal probability of  B summed over all alarm states: 

•  P(B) = ΣaP(B, a) 

•  Conditioning over a subset of  variables: 
•  P(B) = ΣaP(B | a) P(a) 

15 

•  P (A | B)  = 0.9

•  P (B | A)  = 0.47
•  P (B | A) = P (B ∧ A) / P (A)  =�

0.09 / 0.19 = 0.47

•  P (B ∧ A) = 0.09
•  P (B | A) P (A) = �

0.47 × 0.19 = 0.09

•  P (A) = 0.19
•  P (A ∧ B) + P (A ∧ ¬B) =�

0.09 + 0.1 =  0.19

 Try It... 
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alarm ¬ alarm
burglary 0.09 0.01

¬ burglary 0.1 0.8

•  Cond’l probability 
•  P(effect, cause[s]) 
•  P(a | b) = P(a ∧ b) / P(b)
•  P(b): normalizing 

constant (1/α) 

•  Product rule: 
•  P(a ∧ b) = P(a | b) P(b)

•  Marginalizing: 
•  P(B) = ΣaP(B, a)
•  P(B) = ΣaP(B | a) P(a) 

(conditioning) 

Example: Inference from the Joint 

•  P(B | A) = α P(B, A)�
  = α [P(B, A, E) + P(B, A, ¬E)�
  = α [(.01, .01) + (.08, .09)]�
  = α [(.09, .1)]

•  Since �
  P(B | A) + P(¬B | A) = 1, α = 1 / (0.09 + 0.1) = 5.26�
  (i.e., P(A) = 1/α = 0.19)

•  P(B | A) = 0.09 * 5.26 = 0.474

•  P(¬B | A) = 0.1 * 5.26 = 0.526

17

  A ¬A 
E ¬E E ¬E 

B 0.01 0.08 0.001 0.009 
¬B 0.01 0.09 0.01 0.79 

Exercise: Inference from the Joint 

•  Queries: what is… 
•  The prior probability (knowing nothing else) of  smart ? 
•  The prior probability of  study? 
•  The conditional probability of  prepared, given study and 

smart ? 
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P (smart ∧ 
study ∧ prep) 

smart ¬smart 
study ¬study study ¬study 

prepared .432 .16 .084 .008 
¬prepared .048 .16 .036 .072 

Exercise: 
Inference from the joint 

Queries: 
•  What is the prior probability of smart? 
•  What is the prior probability of  study? 
•  What is the conditional probability of  prepared, given study 

and smart? 
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P (smart ∧ 
study ∧ prep) 

smart ¬smart 
study ¬study study ¬study 

prepared .432 .16 .084 .008 
¬prepared .048 .16 .036 .072 

P(smart) = .432 + .16 + .048 + .16  = 0.8 
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Exercise: 
Inference from the joint 

P (smart ∧ 
study ∧ prep) 

smart ¬smart 
study ¬study study ¬study 

prepared .432 .16 .084 .008 
¬prepared .048 .16 .036 .072 

P(study) = .432 + .048 + .084 + .036 = 0.6 

Queries: 
•  What is the prior probability of  smart? 
•  What is the prior probability of study? 
•  What is the conditional probability of  prepared, given study 

and smart? 

Exercise: 
Inference from the joint 

P (smart ∧ 
study ∧ prep) 

smart ¬smart 
study ¬study study ¬study 

prepared .432 .16 .084 .008 
¬prepared .048 .16 .036 .072 

Queries: 
•  What is the conditional probability of prepared, given 
study and smart? 

P(prep|smart,study)  = P(prep, smart, study)/P(smart, study)  

   = .432 / (.432 + .048)  

   = 0.9 

Independence: ⫫ 

•  Independent: Two sets of  propositions that do  
not affect each others’ probabilities 

•  Easy to calculate joint and conditional probability 
of  independence: 
  (A, B)  ó  P(A ∧ B) = P(A) P(B) or P(A | B) = P(A) 

•  Examples:  
   A = alarm M = moon phase
   B = burglary L = light level
   E = earthquake
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A ⫫ B ⫫ E = ?
M ⫫ L = ? 
A ⫫ M = ?

A ⫫ B ⫫ E = f
M ⫫ L = f 
A ⫫ M = t

Independence Example 

•  {moon-phase, light-level} ⫫ {burglary, alarm, earthquake}
•  But maybe burglaries increase in low light 
•  But, if we know the light level, moon-phase ⫫  burglary
•  Once we’re burglarized, light level doesn’t affect whether 

the alarm goes off; {light-level} ⫫ {alarm} 

•  We need: 
1.  A more complex notion of  independence 
2.  Methods for reasoning about these kinds of  (common) 

relationships 
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Exercise: Independence 

•  Queries:  
•  Is smart independent of  study? 
•  P(smart|study) = P(smart) 

•  Is prepared independent of  study? 
•  P(prep|study) = P(prep) 
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P (smart ∧ 
study ∧ prep) 

smart ¬smart 
study ¬study study ¬study 

prepared .432 .16 .084 .008 
¬prepared .048 .16 .036 .072 

Smart Study 

t t 0.432 + 0.48 0.480 

t f  0.16 + 0.16 0.32 

f  t 0.084 + 0.008 0.092 

f  f  0.036 + 0.72 0.756 
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Conditional Probabilities 

•  Describes dependent events 
•  Affect each other in some way 

•  Typical in the real world 

•  If  we know some event has occurred, what does that tell 
us about the likelihood of  another event? 

25 
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Conditional Independence 

•  moon-phase and burglary are conditionally 
independent given light-level
•  That is, M ⫫ B if  we already know L

•  Conditional independence is: 
•  Weaker than absolute independence 
•  Useful in decomposing full joint probability distributions 

26 

Conditional Independence 

•  Absolute independence: A ⫫ B, if: 
•  P(A ∧ B) = P(A) P(B)
•  Equivalently, P(A) = P(A | B) and P(B) = P(B | A)

•  A and B are conditionally independent given C if: 
•  P(A ∧ B | C) = P(A | C) P(B | C)

•  This lets us decompose the joint distribution: 
•  P(A ∧ B ∧ C) = P(A | C) P(B | C) P(C)

•  What does this mean?
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Exercise: Conditional 
Independence 

•  Queries:  
•  Is smart conditionally independent of  prepared, 

given study? 
•  Is study conditionally independent of  prepared, 

given smart? 
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P (smart ∧ 
study ∧ prep) 

smart ¬smart 
study ¬study study ¬study 

prepared .432 .16 .084 .008 
¬prepared .048 .16 .036 .072 

Bayes’ Rule 

•  Derive the probability of  an event given another event 
•  Assumption of  attribute independency (Naïve assumption):  Naïve 

Bayes assumes that all attributes are independent.  

•  Bayes’ rule is derived from the product rule: 
•  P(Y | X) = P(X | Y) P(Y) / P(X)

•  Often useful for diagnosis. If  we have: 
•  X = (observed) effects, Y = (hidden) causes 
•  A model for how causes lead to effects: P(X | Y)
•  Prior beliefs about frequency of  occurrence of  effects: P(Y)

•  We can reason abductively from effects to causes: 
•  P(Y | X)
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CSC 4510.9010 Spring 2015. Paula Matuszek

Naïve Bayes Algorithm 

•  Estimate the probability of  each class: 
•  Compute the posterior probability (Bayes rule) 

•  Choose the class with the highest probability 

•  Assumption of  attribute independency (Naïve 
assumption): Naïve Bayes assumes that all of  the 
attributes are independent.   
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Bayesian Inference 

•  In the setting of  diagnostic/evidential reasoning 

•  Know: prior probability of  hypothesis    
          conditional probability  
•  Want to compute the posterior probability 

•  Bayes’ theorem (formula 1): 

onsanifestatievidence/m                                      

hypotheses                                             

1 mj

i

EEE

 H

P(Hi | Ej ) = P(Hi )P(Ej |Hi ) / P(Ej )

)( iHP
)|( ij HEP

)|( ij HEP

)|( ji EHP

)( iHP
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Simple Bayesian Diagnostic Reasoning 

•  Knowledge base: 
•  Evidence / manifestations:  E1, … Em 

•  Hypotheses / disorders:       H1, … Hn 

•  Ej and Hi are binary; hypotheses are mutually exclusive (non-
overlapping) and exhaustive (cover all possible cases) 

•  Conditional probabilities: P(Ej | Hi), i = 1, … n; j = 1, … m 

•  Cases (evidence for a particular instance): E1, …, Em 

•  Goal: Find the hypothesis Hi with the highest posterior 
•  Maxi P(Hi | E1, …, Em) 
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Priors 

•  Four values total here: 
•  P(H|E) = (P(E|H) * P(H)) / P(E) 

•  P(H|E)  — what we want to compute 

•  Three we already know, called the priors 
•  P(E|H) 
•  P(H) 
•  P(E) 
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(In ML we use the training 
set to estimate the priors)

Bayesian Diagnostic Reasoning II 

•  Bayes’ rule says that 
•  P(Hi | E1, …, Em) = P(E1, …, Em | Hi) P(Hi) / P(E1, …, Em) 

•  Assume each piece of  evidence Ei is conditionally 
independent of  the others, given a hypothesis Hi, then: 
•  P(E1, …, Em | Hi) = ∏l

j=1 P(Ej | Hi) 

•  If  we only care about relative probabilities for the Hi, 
then we have: 
•  P(Hi | E1, …, Em) = α P(Hi) ∏l

j=1 P(Ej | Hi) 
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Bayes Example: Diagnosing Meningitis 

•  Your patient comes in with a stiff  neck.  

•  Is it meningitis? 

•  Suppose we know that 
•  Stiff  neck is a symptom in 50% of  meningitis cases 
•  Meningitis (m) occurs in 1/50,000 patients 
•  Stiff  neck (s) occurs in 1/20 patients 

•  So probably not. But specifically? 
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Bayes Example: Diagnosing Meningitis 

•  Stiff  neck is a symptom in 50% of  meningitis cases 
•  Meningitis (m) occurs in 1/50,000 patients 
•  Stiff  neck (s) occurs in 1/20 patients 

•  Then 
•  P(s|m)  = 0.5, P(m) = 1/50000, P(s) = 1/20 
•  P(m|s)  = (P(s|m) P(m))/P(s) 
            = (0.5 x 1/50000) / 1/20  = .0002 

•  So we expect that one in 5000 patients with a stiff  
neck to have meningitis. 
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Analysis of  Naïve Bayes Algorithm 

•  Advantages: 
•  Sound theoretical basis 

•  Works well on numeric and textual data 

•  Easy implementation and computation 

•  Has been effective in practice (e.g., typical spam filter) 
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Limitations of  Simple  
Bayesian Inference 

•  Cannot easily handle multi-fault situations, nor cases 
where intermediate (hidden) causes exist: 
•  Disease D causes syndrome S, which causes correlated 

manifestations M1 and M2 

•  Consider a composite hypothesis H1 ∧ H2, where H1 and 
H2 are independent. What is the relative posterior? 
•  P(H1 ∧ H2 | E1, …, Em) = α P(E1, …, Em | H1 ∧ H2) P(H1 ∧ H2) 

  = α P(E1, …, Em | H1 ∧ H2) P(H1) P(H2) 
  = α ∏l

m=1 P(Em | H1 ∧ H2) P(H1) P(H2) 

•  How do we compute P(Ej | H1 ∧ H2) ?? 
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Limitations of  Simple Bayesian Inference II 

•  Assume H1 and H2 are independent, given E1, …, Ej? 
•  P(H1 ∧ H2 | E1, …, Ej) = P(H1 | E1, …, Ej) P(H2 | E1, …, Ej) 

•  This is a very unreasonable assumption 
•  Earthquake and Burglar are independent, but not given Alarm: 

•  P(burglar | alarm, earthquake) << P(burglar | alarm) 

•  Simple application of  Bayes’ rule doesn’t handle causal chaining: 
•  A: this year’s weather; B: cotton production; C: next year’s cotton price 

•  A influences C indirectly:  A→ B → C 

•  P(C | B, A) = P(C | B) 

•  Need a richer representation to model interacting hypotheses, 
conditional independence, and causal chaining 

•  Next time: conditional independence and Bayesian networks! 

40 


