Local Search
AI Class 6 (Ch. 4.1-4.2)

Admissibility

- Admissibility is a property of heuristics
 - They are optimistic -- think goal is closer than it is
 - (Or, exactly right)
 - Admissible algorithms can be pretty bad!
- Is \(h(n) \): “1 kilometer” admissible?
- Using admissible heuristics guarantees that the first solution found will be optimal, for some algorithms (A*).

Admissibility and Optimality

- Intuitively:
 - When A* finds a path of length \(k \), it has already tried every other path which can have length \(\leq k \)
 - Because all frontier nodes have been sorted in ascending order of \(f(n) = g(n) + h(n) \)
- Does an admissible heuristic guarantee optimality for greedy search?
 - Reminder: \(f(n) = h(n) \), always choose node “nearest” goal
 - No sorting beyond that

Local Search Algorithms

- Sometimes the path to the goal is irrelevant
 - Goal state itself is the solution
 - 3 an objective function to evaluate states
 - In such cases, we can use local search algorithms
 - Keep a single “current” state, try to improve it

Today’s Class

- Iterative improvement methods
 - Hill climbing
 - Simulated annealing
 - Local beam search
 - Genetic algorithms
 - Online search

“If the path to the goal does not matter... we can use a single current node and move to neighbors of that node.”

~ R&N pg. 121

Local Search Algorithms

- Sometimes the path to the goal is irrelevant
 - Goal state itself is the solution
 - 3 an objective function to evaluate states
 - In such cases, we can use local search algorithms
 - Keep a single “current” state, try to improve it

Very efficient!

Why?
Iterative Improvement Search

- Start with an initial guess
- Gradually improve it until it is legal or optimal
- Some examples:
 - Hill climbing
 - Simulated annealing
 - Constraint satisfaction

Hill Climbing on State Surface

- Concept: trying to reach the “highest” (most desirable) point (state)
- “Height” Defined by Evaluation Function
- Look one step ahead to determine if any successor is “better” than current state
- If so, move to the best successor
- A kind of Greedy search in that it uses h
 - But, does not allow backtracking or jumping to an alternative path
 - Doesn’t “remember” where it has been.
- Not complete
 - Search will terminate at local minima, plateaux, ridges.

Hill Climbing Search

- If there exists a successor s for the current state n such that
 - $h(s) > h(n)$
 - $h(s) >= h(t)$ for all the successors t of n
 then move from n to s. Otherwise, halt at n.
- Look one step ahead to determine if any successor is “better” than current state
 - If so, move to the best successor

Hill Climbing Example

$f(n) = -(\text{number of tiles out of place})$
Exploring the Landscape

- **Local Maxima:** Peaks that aren't the highest point in the space
- **Plateaus:** A broad flat region that gives the search algorithm no direction (random walk)
- **Ridges:** Flat like a plateau, but with drop-offs to the sides; steps to the North, East, South, and West may go down, but a step to the NW may go up.

Example of a Local Optimum

- **Start:** $f = -6$
- **Goal:** $f = 0$

Some Extensions of Hill Climbing

- **Simulated Annealing:**
 - Escape local maxima by allowing some "bad" moves but gradually decreasing their frequency
- **Local Beam Search:**
 - Keep track of k states rather than just one
 - At each iteration:
 - All successors of the k states are generated and evaluated
 - Best k are chosen for the next iteration
- **Stochastic Beam Search:**
 - Chooses semi-randomly from "uphill" possibilities
 - "Steeper" moves have a higher probability of being chosen
- **Random-Restart Climbing:**
 - Can actually be applied to any form of search
 - Pick random starting points until one leads to a solution
- **Genetic Algorithms:**
 - Each successor is generated from two predecessor (parent) states

Drawbacks of Hill Climbing

- **Problems:** local maxima, plateaus, ridges
- **Remedies:**
 - **Random restart:** keep restarting the search from random locations until a goal is found.
 - **Problem reformulation:** reformulate the search space to eliminate these problematic features
- **Some problem spaces are great for hill climbing; others are terrible**

Gradient Ascent / Descent

- **Take downward "steps" proportional to the negative of the gradient of the function at current state.**
- **"Steepest descent"**
- **Gradient descent procedure for finding the arg\text{min} f(x):**
 - choose initial x_0 randomly
 - repeat:
 - $x_{i+1} = x_i - \eta / \nabla f(x_i)$
 - until the sequence $x_0, x_1, \ldots, x_i, x_{i+1}$ converges
 - Step size η (eta) is small (~0.1~0.05)
- **Good for differentiable, continuous spaces**
Gradient Ascent / Descent

Gradient Methods vs. Newton's Method

• A reminder of Newton's method from Calculus:
 \[x_{i+1} = x_i - \frac{f'(x_i)}{f''(x_i)} \]

 • Newton's method uses 2nd order information (the second derivative, or, curvature) to take a more direct route to the minimum.

 • The second-order information is more expensive to compute, but converges more quickly.

Simulated Annealing

• Simulated annealing (SA): analogy between the way metal cools into a minimum-energy crystalline structure and the search for a minimum generally

 • In very hot metal, molecules can move fairly freely
 • But, they are slightly less likely to move out of a stable structure
 • As you slowly cool the metal, more molecules are “trapped” in place

• Conceptually: Escape local maxima by allowing some “bad” (locally counterproductive) moves but gradually decreasing their frequency

Simulated Annealing (II)

• Can avoid becoming trapped at local minima.

• Uses a random local search that:

 • Accepts changes that increase objective function \(f \)
 • As well as some that decrease it

• Uses a control parameter \(T \)

 • By analogy with the original application
 • Is known as the system “temperature”

 • \(T \) starts out high and gradually decreases toward 0

Simulated Annealing (IV)

• \(f(s) \) represents the quality of state \(s \) (high is good)

• A “bad” move from \(A \) to \(B \) is accepted with a probability

 \[P_{\text{move } A \rightarrow B} = e^{\frac{f(B) - f(A)}{T}} \]

 • (Note that \(f(B) - f(A) \) will be negative, so bad moves always have a relative probability less than one. Good moves, for which \(f(B) - f(A) \) is positive, have a relative probability greater than one.)

• Temperature

 • Higher temperature = more likely to make a “bad” move
 • As \(T \) tends to zero, this probability tends to zero
 • SA becomes more like hill climbing

 • If \(T \) is lowered slowly enough, SA is complete and admissible.
 • domain-specific
 • sometimes hard to determine

Local Beam Search

• Begin with \(k \) random states

 • \(k \), instead of one, current state(s)

• Generate all successors of these states

• Keep the \(k \) best states

• Stochastic beam search

 • Probability of keeping a state is a function of its heuristic value
 • More likely to keep “better” successors
Genetic Algorithms

- The Idea:
 - New states are generated by "mutating" a single state or "reproducing" (somehow combining) two parent states
 - Selected according to their fitness
- Similar to stochastic beam search
- Start with k random states (the initial population)
 - Encoding used for the "genome" of an individual strongly affects the behavior of the search
 - Must have some combinable representation of state spaces
 - Genetic algorithms / genetic programming are a large and active area of research

Tabu Search

- Problem: Hill climbing can get stuck on local maxima
- Solution: Maintain a list of k previously visited states, and prevent the search from revisiting them
- Why not always do this?

Online Search

- Interleave computation and action (search some, act some)
 - Exploration: Can't infer outcomes of actions, must actually perform them to learn what will happen
 - Competitive ratio = Path cost found / Path cost that could be found**
 - *On average, or in an adversarial scenario (worst case)
 - **If the agent knew the nature of the space, and could use offline search
 - Relatively easy if actions are reversible
 - LRTA* (Learning Real-Time A*): Update h(s) (in state table) based on experience
 - More about online search and nondeterministic actions next time...

Summary: Informed Search (I)

- State space can be treated as a "landscape" of movement on quality of states where we are trying to find "high" points
- Best-first search is a general search where the minimum-cost nodes are expanded first.
- Greedy search uses minimal estimated cost h(n) to the goal state as measure of goodness.
 - Reduces search time, but is neither complete nor optimal.

Summary: Informed Search (II)

- Hill-climbing algorithms keep only a single state in memory, but can get stuck on local optima.
- Simulated annealing escapes local optima, and is complete and optimal given a "long enough" cooling schedule.
- Genetic algorithms search a space by modeling biological evolution.
- Online search algorithms are useful in state spaces with partial/no information.

Class Exercise:
Local Search for N-Queens

<table>
<thead>
<tr>
<th>Q</th>
<th>Q</th>
<th>Q</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>Q</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
</tbody>
</table>

Questions?