
1

Local Search
AI Class 6 (Ch. 4.1-4.2)

Cynthia Matuszek – CMSC 671

Based on slides by Dr. Marie desJardin. Some material also adapted from slides by Dr.
Matuszek @ Villanova University, which are based on Hwee Tou Ng at Berkeley, which

are based on Russell at Berkeley. Some diagrams are based on AIMA.

Today’s Class

•  Iterative improvement methods

•  Hill climbing

•  Simulated annealing

•  Local beam search

•  Genetic algorithms

•  Online search

3

“If	the	path	to	the	goal	
does	not	matter…	[we	
can	use]	a	single	current	
node	and	move	to	
neighbors	of	that	node.”	

–	R&N	pg.	121	

Admissibility

•  Admissibility is a property of heuristics
•  They are optimistic – think goal is closer than it is

•  (Or, exactly right)

•  Admissible algorithms
can be pretty bad!

•  Is h(n): “1 kilometer” admissible?

•  Using admissible heuristics guarantees that the first
solution found will be optimal, for some algorithms (A*).

4

Admissibility and Optimality

•  Intuitively:
•  When A* finds a path of length k, it has already tried

every other path which can have length ≤ k

•  Because all frontier nodes have been sorted in ascending
order of f(n)=g(n)+h(n)

•  Does an admissible heuristic guarantee optimality
for greedy search?
•  Reminder: f(n) = h(n), always choose node “nearest” goal
•  No sorting beyond that

5

E

Local Search Algorithms

6

•  Sometimes the path to the goal is irrelevant
•  Goal state itself is the solution
•  an objective function to evaluate states

•  In such cases, we can use local search algorithms

•  Keep a single “current” state, try to improve it

X

E

Local Search Algorithms

7

•  Sometimes the path to the goal is irrelevant
•  Goal state itself is the solution
•  an objective function to evaluate states

•  State space = set of “complete” configurations
•  That is, all elements of a solution are present
•  Find configuration satisfying constraints
•  Example?

•  In such cases, we can use local search algorithms

•  Keep a single “current” state, try to improve it

Very efficient!

Why?

2

State Space (Landscape)

8

State Space (Landscape)

A

B

S

S

A 1 B 4

2

Iterative Improvement Search

•  Start with an initial guess

•  Gradually improve it until it is legal or optimal

•  Some examples:
•  Hill climbing

•  Simulated annealing

•  Constraint satisfaction

10

Hill Climbing on State Surface

•  Concept:
trying to reach
the “highest”
(most
desirable)
point (state)

•  “Height”
Defined by
Evaluation
Function

11

Hill Climbing Search

•  If there exists a successor s for the current state n such that
•  h(s) > h(n)
•  h(s) >= h(t) for all the successors t of n,

 then move from n to s. Otherwise, halt at n.

•  Look one step ahead to determine if any successor is “better” than
current state
•  If so, move to the best successor

•  A kind of Greedy search in that it uses h
•  But, does not allow backtracking or jumping to an alternative path
•  Doesn’t “remember” where it has been.

•  Not complete
•  Search will terminate at local minima, plateaux, ridges.

12

2 8 3
1 6 4
7 5

2 8 3
1 4
7 6

5

2 3
1 8 4
7 6 5

1 3
 8 4
7 6 5

2

 3
1 8 4
7 6 5

2

1 3
8 4
7 6 5

2
start goal

-5

h = -3

h = -3

h = -2

h = -1

h = 0 h = -4

-5

-4

-4 -3

-2

f(n) = -(number of tiles out of place)

Hill Climbing Example

3

Image from: http://classes.yale.edu/fractals/CA/GA/Fitness/Fitness.html

local maximum

ridge

plateau

Exploring the Landscape

•  Local Maxima:
•  Peaks that aren’t the highest

point in the space

•  Plateaus:
•  A broad flat region that gives

the search algorithm no
direction (random walk)

•  Ridges:
•  Flat like a plateau, but with

drop-offs to the sides; steps
to the North, East, South
and West may go down, but
a step to the NW may go up.

Drawbacks of Hill Climbing

•  Problems: local maxima, plateaus, ridges

•  Remedies:
•  Random restart: keep restarting the search from random

locations until a goal is found.
•  Problem reformulation: reformulate the search space to

eliminate these problematic features

•  Some problem spaces are great for hill climbing;
others are terrible

15

Example of a Local Optimum

1 2 5
8 7 4
 6 3

 4
1 2 3
8
7 6 5

1 2 5
8 7 4

 3

f = -6

f = -7

f = -7

f = 0

start goal

2 5
 7 4
8 6 3

1

6

move
up

move
right

f = -(manhattan distance) 16

Some Extensions of Hill Climbing

•  Simulated Annealing
•  Escape local maxima by allowing some “bad” moves but

gradually decreasing their frequency

•  Local Beam Search
•  Keep track of k states rather than just one

•  At each iteration:

•  All successors of the k states are generated and evaluated

•  Best k are chosen for the next iteration

17

Some Extensions of Hill Climbing

•  Stochastic Beam Search
•  Chooses semi-randomly from “uphill” possibilities

•  “Steeper” moves have a higher probability of being chosen

•  Random-Restart Climbing
•  Can actually be applied to any form of search

•  Pick random starting points until one leads to a solution

•  Genetic Algorithms
•  Each successor is generated from two predecessor (parent)

states

18

•  Take downward “steps” proportional to the negative of the
gradient of the function at current state.

•  “Steepest descent”

•  Gradient descent procedure for finding the argx min f(x)
•  choose initial x0 randomly
•  repeat
•  xi+1 � xi – � f ’ (xi)

•  until the sequence x0, x1, …, xi, xi+1 converges

•  Step size�(eta) is
small (~0.1–0.05)

•  Good for differentiable, continuous spaces

Gradient Ascent / Descent

Images from http://en.wikipedia.org/wiki/Gradient_descent 19

4

Gradient Ascent / Descent

Images from http://en.wikipedia.org/wiki/Gradient_descent 20

Gradient Methods vs. Newton’s Method

•  A reminder of Newton’s
method from Calculus:

xi+1 � xi – � f ’ (xi) / f ’’ (xi)

•  Newton�s method uses 2nd
order information (the second
derivative, or, curvature) to
take a more direct route to the
minimum.

•  The second-order information
is more expensive to compute,
but converges more quickly.

Contour lines of a function (blue)
• Gradient descent (green)
• Newton’s method (red)

Images from http://en.wikipedia.org/wiki/Newton's_method_in_optimization

Simulated Annealing

•  Simulated annealing (SA): analogy between the way
metal cools into a minimum-energy crystalline structure
and the search for a minimum generally
•  In very hot metal, molecules can move fairly freely

•  But, they are slightly less likely to move out of a stable structure

•  As you slowly cool the metal, more molecules are “trapped” in
place

•  Conceptually: Escape local maxima by allowing some
“bad” (locally counterproductive) moves but gradually
decreasing their frequency

22

Simulated Annealing (II)

•  Can avoid becoming trapped at local minima.

•  Uses a random local search that:
•  Accepts changes that increase objective function f
•  As well as some that decrease it

•  Uses a control parameter T
•  By analogy with the original application

•  Is known as the system “temperature”

•  T starts out high and gradually decreases toward 0

23

freedom to
make “bad”
moves

Simulated Annealing (IV)

•  f (s) represents the quality of state n (high is good)

•  A “bad” move from A to B is accepted with a probability

 P(moveA�B) ≈ e(f (B) – f (A)) / T

•  (Note that f (B) – f (A) will be negative, so bad moves always have a relative
probability less than one. Good moves, for which f (B) – f (A) is positive, have a
relative probability greater than one.)

•  Temperature
•  Higher temperature = more likely to make a “bad” move
•  As T tends to zero, this probability tends to zero
•  SA becomes more like hill climbing

•  If T is lowered slowly enough, SA is complete and admissible.
• domain-specific �
• sometimes hard to determine

Local Beam Search

•  Begin with k random states
•  k, instead of one, current state(s)

•  Generate all successors of these states

•  Keep the k best states

•  Stochastic beam search
•  Probability of keeping a state is a function of its heuristic

value
•  More likely to keep “better” successors

27

5

Genetic Algorithms

•  The Idea:
•  New states are generated by

“mutating” a single state or
“reproducing” (somehow
combining) two parent states

•  Selected according to their fitness

•  Similar to stochastic beam search

•  Start with k random states (the initial population)
•  Encoding used for the “genome” of an individual strongly affects the

behavior of the search
•  Must have some combinable representation of state spaces
•  Genetic algorithms / genetic programming are a large and active area

of research

28

+

Tabu Search

•  Problem: Hill climbing can get stuck on local
maxima

•  Solution: Maintain a list of k previously visited
states, and prevent the search from revisiting them

•  Why not always do this?

29

Online Search

•  Interleave computation and action (search some, act some)
•  Exploration: Can’t infer outcomes of actions; must actually perform them to learn what

will happen

•  Competitive ratio = Path cost found* / Path cost that could be found**
* On average, or in an adversarial scenario (worst case)

** If the agent knew the nature of the space, and could use offline search

•  Relatively easy if actions are reversible

•  LRTA* (Learning Real-Time A*): Update h(s) (in state table) based on
experience

•  More about online search and nondeterministic actions next time…

30

Summary: Informed Search (I)

•  State space can be treated as a “landscape” of movement on quality of
states where we are trying to find “high” points

•  Best-first search is a general search where the minimum-cost nodes are
expanded first.

•  Greedy search uses minimal estimated cost h(n) to the goal state as
measure of goodness.
•  Reduces search time, but is neither complete nor optimal.

31

Summary: Informed Search (II)

•  Hill-climbing algorithms keep only a single state in memory, but can get
stuck on local optima.

•  Simulated annealing escapes local optima, and is complete and optimal
given a “long enough” cooling schedule.

•  Genetic algorithms search a space by modeling biological evolution.

•  Online search algorithms are useful in state spaces with partial/no
information.

32

Questions?

Class Exercise:
Local Search for N-Queens

Q

Q

Q

Q

Q

Q

(more on constraint satisfaction heuristics next time...)

