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Local Search 
AI Class 6 (Ch. 4.1-4.2) 

Cynthia Matuszek – CMSC 671 

Based on slides by Dr. Marie desJardin. Some material also adapted from slides by Dr. 
Matuszek @ Villanova University, which are based on Hwee Tou Ng at Berkeley, which 

are based on Russell at Berkeley. Some diagrams are based on AIMA. 

Today’s Class 

•  Iterative improvement methods 

•  Hill climbing 

•  Simulated annealing 

•  Local beam search 

•  Genetic algorithms 

•  Online search 
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“If	the	path	to	the	goal	
does	not	matter…	[we	
can	use]	a	single	current	
node	and	move	to	
neighbors	of	that	node.”	

–	R&N	pg.	121	

Admissibility 

•  Admissibility is a property of  heuristics 
•  They are optimistic – think goal is closer than it is 

•  (Or, exactly right) 

•  Admissible algorithms  
can be pretty bad! 

•  Is h(n): “1 kilometer” admissible? 

•  Using admissible heuristics guarantees that the first 
solution found will be optimal, for some algorithms (A*). 
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Admissibility and Optimality 

•  Intuitively:  
•  When A* finds a path of  length k, it has already tried 

every other path which can have length ≤ k  

•  Because all frontier nodes have been sorted in ascending 
order  of  f(n)=g(n)+h(n)  

•  Does an admissible heuristic guarantee optimality 
for greedy search? 
•  Reminder: f(n) = h(n), always choose node “nearest” goal 
•  No sorting beyond that 
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E

Local Search Algorithms 

6 

•  Sometimes the path to the goal is irrelevant 
•  Goal state itself  is the solution 
•     an objective function to evaluate states 

•  In such cases, we can use local search algorithms 

•  Keep a single “current” state, try to improve it 

X

E

Local Search Algorithms 
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•  Sometimes the path to the goal is irrelevant 
•  Goal state itself  is the solution 
•     an objective function to evaluate states 

•  State space = set of  “complete” configurations 
•  That is, all elements of  a solution are present 
•  Find configuration satisfying constraints 
•  Example? 

•  In such cases, we can use local search algorithms 

•  Keep a single “current” state, try to improve it 

Very efficient!

Why?



2 

State Space (Landscape) 
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Iterative Improvement Search 

•  Start with an initial guess  

•  Gradually improve it until it is legal or optimal 

•  Some examples: 
•  Hill climbing 

•  Simulated annealing 

•  Constraint satisfaction 
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Hill Climbing on State Surface 

•  Concept: 
trying to reach 
the “highest”  
(most 
desirable) 
point (state) 

•  “Height” 
Defined by 
Evaluation 
Function 

11 

Hill Climbing Search 

•  If  there exists a successor s for the current state n such that  
•  h(s) > h(n) 
•  h(s) >= h(t) for all the successors t of  n,  

     then move from n to s. Otherwise, halt at n.  

•  Look one step ahead to determine if  any successor is “better” than 
current state 
•  If  so, move to the best successor 

•  A kind of  Greedy search in that it uses h 
•  But, does not allow backtracking or jumping to an alternative path  
•  Doesn’t “remember” where it has been. 

•  Not complete  
•  Search will terminate at local minima, plateaux, ridges. 
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f(n) = -(number of tiles out of place)  

Hill Climbing Example 
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Image from: http://classes.yale.edu/fractals/CA/GA/Fitness/Fitness.html 
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Exploring the Landscape 

•  Local Maxima:  
•  Peaks that aren’t the highest 

point in the space 

•  Plateaus:  
•  A broad flat region that gives 

the search algorithm no 
direction (random walk) 

•  Ridges:  
•  Flat like a plateau, but with 

drop-offs to the sides; steps 
to the North, East, South 
and West may go down, but 
a step to the NW may go up. 

Drawbacks of  Hill Climbing 

•  Problems: local maxima, plateaus, ridges 

•  Remedies:  
•  Random restart:  keep restarting the search from random 

locations until a goal is found. 
•  Problem reformulation: reformulate the search space to 

eliminate these problematic features 

•  Some problem spaces are great for hill climbing; 
others are terrible 
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Example of  a Local Optimum 
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Some Extensions of  Hill Climbing 

•  Simulated Annealing   
•  Escape local maxima by allowing some “bad” moves but 

gradually decreasing their frequency 

•  Local Beam Search 
•  Keep track of  k states rather than just one 

•  At each iteration: 

•  All successors of  the k states are generated and evaluated 

•  Best k  are chosen for the next iteration 
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Some Extensions of  Hill Climbing 

•  Stochastic Beam Search 
•  Chooses semi-randomly from “uphill” possibilities 

•  “Steeper” moves have a higher probability of  being chosen 

•  Random-Restart Climbing 
•  Can actually be applied to any form of  search 

•  Pick random starting points until one leads to a solution 

•  Genetic Algorithms 
•  Each successor is generated from two predecessor (parent) 

states 
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•  Take downward “steps” proportional to the negative of  the 
gradient of  the function at current state. 

•  “Steepest descent” 

•  Gradient descent procedure for finding the argx min f(x) 
•  choose initial x0 randomly 
•  repeat 
•  xi+1 � xi – � f ’ (xi) 

•  until the sequence x0, x1, …, xi, xi+1 converges 

•  Step size�(eta) is  
small (~0.1–0.05) 

•  Good for differentiable, continuous spaces 

Gradient Ascent / Descent 

Images from http://en.wikipedia.org/wiki/Gradient_descent 19 
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Gradient Ascent / Descent 

Images from http://en.wikipedia.org/wiki/Gradient_descent 20 

Gradient Methods vs. Newton’s Method 

•  A reminder of  Newton’s 
method from Calculus: 

xi+1 � xi – � f ’ (xi) / f ’’ (xi)  

•  Newton�s method uses 2nd 
order information (the second 
derivative, or, curvature) to 
take a more direct route to the 
minimum. 

•  The second-order information 
is more expensive to compute, 
but converges more quickly. 

Contour lines of a function (blue) 
• Gradient descent (green) 
• Newton’s method (red) 

Images from http://en.wikipedia.org/wiki/Newton's_method_in_optimization 

Simulated Annealing 

•  Simulated annealing (SA): analogy between the way 
metal cools into a minimum-energy crystalline structure 
and the search for a minimum generally 
•  In very hot metal, molecules can move fairly freely 

•  But, they are slightly less likely to move out of  a stable structure 

•  As you slowly cool the metal, more molecules are “trapped” in 
place 

•  Conceptually: Escape local maxima by allowing some 
“bad” (locally counterproductive)  moves but gradually 
decreasing their frequency 
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Simulated Annealing (II) 

•  Can avoid becoming trapped at local minima. 

•  Uses a random local search that: 
•  Accepts changes that increase objective function f  
•  As well as some that decrease it 

•  Uses a control parameter T 
•  By analogy with the original application  

•  Is known as the system “temperature” 

•  T starts out high and gradually decreases toward 0 
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freedom to 
make “bad” 
moves

Simulated Annealing (IV) 

•  f (s) represents the quality of  state n (high is good) 

•  A “bad” move from A to B is accepted with a probability 

 P(moveA�B) ≈ e( f  (B) – f  (A))  / T 
 

•  (Note that f (B) – f (A) will be negative, so bad moves always have a relative 
probability less than one.  Good moves, for which f (B) – f (A) is positive, have a 
relative probability greater than one.) 

•  Temperature 
•  Higher temperature = more likely to make a “bad” move 
•  As T tends to zero, this probability tends to zero 
•  SA becomes more like hill climbing 

•  If  T is lowered slowly enough, SA is complete and admissible.  
• domain-specific �
• sometimes hard to determine

Local Beam Search 

•  Begin with k random states  
•  k, instead of  one, current state(s) 

•  Generate all successors of  these states 

•  Keep the k best states 

•  Stochastic beam search 
•  Probability of  keeping a state is a function of  its heuristic 

value 
•  More likely to keep “better” successors 

27 



5 

Genetic Algorithms 

•  The Idea:  
•  New states are generated by  

“mutating” a single state or  
“reproducing” (somehow  
combining) two parent states 

•  Selected according to their fitness 

•  Similar to stochastic beam search 

•  Start with k random states (the initial population) 
•  Encoding used for the “genome” of  an individual strongly affects the 

behavior of  the search 
•  Must have some combinable representation of  state spaces 
•  Genetic algorithms / genetic programming are a large and active area 

of  research 
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Tabu Search 

•  Problem: Hill climbing can get stuck on local 
maxima 

•  Solution: Maintain a list of  k previously visited 
states, and prevent the search from revisiting them 

•  Why not always do this? 
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Online Search 

•  Interleave computation and action (search some, act some) 
•  Exploration: Can’t infer outcomes of  actions; must actually perform them to learn what 

will happen 

•  Competitive ratio = Path cost found* / Path cost that could be found**  
* On average, or in an adversarial scenario (worst case) 

** If  the agent knew the nature of  the space, and could use offline search 

•  Relatively easy if  actions are reversible  

•  LRTA* (Learning Real-Time A*): Update h(s) (in state table) based on 
experience 

•  More about online search and nondeterministic actions next time… 
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Summary: Informed Search (I) 

•  State space can be treated as a “landscape” of  movement on quality of  
states where we are trying to find “high” points 

•  Best-first search is a general search where the minimum-cost nodes are 
expanded first.  

•  Greedy search uses minimal estimated cost h(n) to the goal state as 
measure of  goodness. 
•  Reduces search time, but is neither complete nor optimal.  
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Summary: Informed Search (II) 

•  Hill-climbing algorithms keep only a single state in memory, but can get 
stuck on local optima.  

•  Simulated annealing escapes local optima, and is complete and optimal 
given a “long enough” cooling schedule.  

•  Genetic algorithms search a space by modeling biological evolution. 

•  Online search algorithms are useful in state spaces with partial/no 
information. 
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Questions?

Class Exercise: 
Local Search for N-Queens 
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(more on constraint satisfaction heuristics next time...) 


