
1

Informed Search
AI Class 5 (Ch. 3.5-3.7)

Dr. Cynthia Matuszek – CMSC 671

Based on slides by Dr. Marie desJardin. Some material also adapted from slides by Dr.
Matuszek @ Villanova University, which are based on Hwee Tou Ng at Berkeley, which

are based on Russell at Berkeley. Some diagrams are based on AIMA.

Bookkeeping

•  Next lecture:
•  Python for AI

•  Eight decades of AI
•  (okay, 4)

Today’s Class

•  Heuristic search

•  Best-first search
•  Greedy search
•  Beam search
•  A, A*
•  Examples

•  Memory-conserving
variations of A*

•  Heuristic functions

3

“An	informed	search	
strategy—one	that	uses	
problem	specific	
knowledge…	can	find	
solutions	more	efficiently	
then	an	uninformed	
strategy.”	

–	R&N	pg.	92	

Weak vs. Strong Methods

•  Weak methods:
•  Extremely general, not tailored to a specific situation

•  Examples
•  Means-ends analysis: the current situation and goal, then look for

ways to shrink the differences between the two
•  Space splitting: try to list possible solutions to a problem, then try

to rule out classes of these possibilities
•  Subgoaling: split a large problem into several smaller ones that can

be solved one at a time.

•  Called “weak” methods because they do not take
advantage of more powerful domain-specific heuristics

4

Heuristic

Free On-line Dictionary of Computing*
1.   A rule of thumb, simplification, or educated guess
2.  Reduces, limits, or guides search in particular domains
3.  Does not guarantee feasible solutions; often used with no

theoretical guarantee

WordNet (r) 1.6*
1.  Commonsense rule (or set of rules) intended to increase

the probability of solving some problem

*Heavily edited for clarity 5

Heuristic Search

6

•  Uninformed search is generic
•  Node selection depends only on shape of tree and node

expansion trategy.

•  Sometimes domain knowledge à Better decision
•  Knowledge about the specific problem

2

Heuristic Search

7

•  Romania: Aradà Bucharest (for example)

Heuristic Search

8

•  Romania:
•  Eyeballing it à certain cities first

•  They “look closer” to where we are going

•  Can domain
knowledge be
captured in a
heuristic?

S

G

Heuristics Examples

9

•  8-puzzle:
•  # of tiles in wrong place

•  8-puzzle (better):
•  Sum of distances from goal

•  Captures distance and
number of nodes

•  Romania:
•  Straight-line distance from

start node to Bucharest

•  Captures “closer to Bucharest”

Heuristic Function

10

•  All domain-specific knowledge is encoded in
heuristic function h

•  h is some estimate of how desirable a move is
•  How “close” (we think) it gets us to our goal

•  Usually:
•  h(n) ≥ 0: for all nodes n
•  h(n) = 0: n is a goal node
•  h(n) = ∞: n is a dead end (no goal can be reached from n)

Example Search Space Revisited

S

C B A

D G E

1 5 8

9 4 5
3

7

8

8 4 3

∞ ∞ 0

start state

goal state

arc cost

h value

11

Informed Methods Add
Domain-Specific Information

•  Goal: select the best path to continue searching

•  Define h(n) to estimates the “goodness” of node n
•  h(n) = estimated cost (or distance) of minimal cost path

from n to a goal state

•  Heuristic function is:
•  An estimate of how close we are to a goal
•  Based on domain-specific information
•  Computable from the current state description

12

3

Straight Lines to Budapest (km)

13 R&N pg. 68, 93

hSLD(n)

Admissible Heuristics

•  Admissible heuristics never overestimate cost
•  They are optimistic – think goal is closer than it is

•  h(n) ≤ h*(n)
•  where h*(n) is true cost to reach goal from n

•  hLSD(Lugoj) = 244
•  Can there be a shorter path?

•  Using admissible heuristics guarantees that the first
solution found will be optimal

14

Best-First Search

•  A generic way of referring to informed methods

•  Use an evaluation function f(n) for each node
à estimate of “desirability”
•  f (n) incorporates domain-specific information
• Different f (n) à Different searches

15

Best-First Search (more)

•  Order nodes on the list by
•  Increasing value of f (n)

•  Expand most desirable unexpanded node
•  Implementation:
•  Order nodes in frontier in decreasing order of desirability

•  Special cases:
•  Greedy best-first search
•  A* search

16

Greedy Best-First Search

•  Idea: always choose “closest node” to goal
•  Most likely to lead to a solution quickly

•  So, evaluate nodes based only
on heuristic function
•  f(n) = h(n)

•  Sort nodes by increasing
values of f

•  Select node believed to be closest
to a goal node (hence “greedy”)
•  That is, select node with smallest f value

17

a

g b

g

h=2

h=0

h=4

h c

d

e
i

h=1

h=1

h=1

h=1

h=0

Greedy Best-First Search

•  Admissible?
•  Why not?

•  Example:
•  Greedy search will find:

 aàbàcàdàeàg ; cost = 5
•  Optimal solution:

 aàgàhài ; cost = 3

•  Not complete (why?)

18

a

g b

c

d

e

g

h

i

h=2

h=1

h=1

h=1

h=0

h=4

h=1

h=0

4

Straight Lines to Budapest (km)

19 R&N pg. 68, 93

hSLD(n)

Greedy Best-First Search: Ex. 1

S

G

224

242

What can we
say about the
search space?

21

Greedy Best-First Search: Ex. 2

hSLD(n)

22

Greedy Best-First Search: Ex. 2

Greedy Best-First Search: Ex. 2

23 24

Greedy Best-First Search: Ex. 2

5

Beam Search

•  Use an evaluation function f (n) = h(n), but the
maximum size of the nodes list is k, a fixed constant

•  Only keeps k best nodes as candidates for expansion,
and throws the rest away

•  More space-efficient than greedy search, but may
throw away a node that is on a solution path

•  Not complete

•  Not admissible

25

Algorithm A

•  Use evaluation function
f (n) = g(n) + h(n)

•  g(n) = minimal-cost path from
any S to state n

•  Ranks nodes on search
frontier by estimated cost of
solution
•  From start node, through given

node, to goal

•  Not complete if h(n) can = ∞

•  Not admissible

26

Example Search Space Revisited

S

C B A

D G E

1 5 8

9 4 5
3

7

8

8 4 3

∞ ∞ 0

start state

goal state

arc cost

h value

0

1

4 8 9

8 5

g value

27

Example Search Space Revisited

S

C B A

D G E

1 5 8

9 4 5
3

7

8

8 4 3

∞ ∞ 0

start state

goal state

arc cost

h value

parent pointer

0

1

4 8 9

8 5

g value

28

Algorithm A

•  Use evaluation function
f (n) = g(n) + h(n)

•  g(n) = minimal-cost path from
any S to state n

•  Ranks nodes on search
frontier by estimated cost of
solution
•  From start node, through given

node, to goal

•  Not complete if h(n) can = ∞

•  Not admissible

S

B A

D
G

1 5 8

3

1

5

C

1

9

4

5 8
9

g(d)=4
h(d)=9

C is chosen
next to expand

29

Algorithm A
1.	Put	start	node	S	on	the	nodes	list,	called	OPEN		

2.	If	OPEN	is	empty,	exit	with	failure		

3.	Select	node	in	OPEN	with	minimal	f(n)	and	place	on	CLOSED	

4.	If	n	is	a	goal	node,	collect	path	back	to	start;	terminate	

5.	Expand	n,	generating	all	its	successors,	and	attach	to	them	
pointers	back	to	n.		For	each	successor	n'	of	n		
1.	If	n'	is	not	already	on	OPEN	or	CLOSED	
•  put	n'	on	OPEN	
•  compute	h(n'),		g(n')	=	g(n)	+	c(n,n'),		f	(n')	=	g(n')	+	h(n')	

2.	If	n'	is	already	on	OPEN	or	CLOSED	and	if	g(n')	is	lower	for	the	new	
version	of	n',	then:	
•  Redirect	pointers	backward	from	n'	along	path	yielding	lower	g(n').	
•  Put	n'	on	OPEN.		

30

6

Some Observations on A

•  Perfect heuristic: If h(n) = h*(n) for all n:
• Only nodes on the optimal solution path will be

expanded

• No extra work will be performed

•  Null heuristic: If h(n) = 0 for all n:
•  This is an admissible heuristic

• A* acts like Uniform-Cost Search

31

The closer h
is to h*, the
fewer extra
nodes will be
expanded

Some Observations on A

•  Better heuristic:
If h1(n) < h2(n) ≤ h*(n) for all
non-goal nodes, h2 is a better
heuristic than h1

•  If A1* uses h1, A2* uses h2,
à every node expanded by A2* is
also expanded by A1*

•  So A1 expands at least as many nodes as A2*

32

We say
that A2* is
better
informed
than A1*

Quick Terminology Check
•  What is f (n)?
•  An evaluation function

that gives…
•  A cost estimate of...
•  The distance from n to G

•  What is h(n)?
•  A heuristic function

that…
•  Encodes domain

knowledge about...
•  The search space

•  What is h*(n)?
•  A heuristic function that

gives the…

•  True cost to reach goal from n
•  Why don’t we just use that?

•  What is g(n)?
•  The path cost of getting from

S to n
•  describes the “spent” costs of

the current search

A* Search

•  Avoid expanding paths that are already expensive
•  Combines costs-so-far with expected-costs

•  A* is complete iff
•  Branching factor is finite
•  Every operator has a fixed positive cost

•  A* is admissible iff
•  h(n) is admissible

34

A* Search

•  Idea: Evaluate nodes by combining g(n), the cost of
reaching the node, with h(n), the cost of getting from
the node to the goal.

•  Evaluation function f(n) = g(n) + h(n)
•  g(n) = cost so far to reach n
•  h(n) = estimated cost from n to goal
•  f(n) = estimated total cost of path

 through n to goal

35

S

C

G

8

5

3

0

cost
h

0

9

8

g

A* Example 1

36

7

A* Example 1

37

A* Example 1

38

A* Example 1

39

A* Example 1

40

A* Example 1

41

Algorithm A*

•  Algorithm A with constraint that h(n) ≤ h*(n)
•  h*(n) = true cost of the minimal cost path from n to a goal.

•  Therefore, h(n) is an underestimate of the distance to the
goal

•  h() is admissible when h(n) ≤ h*(n)
•  Guarantees optimality

•  A* is complete whenever the branching factor is finite,
and every operator has a fixed positive cost

•  A* is admissible

42

8

Example Search Space Revisited

S

C B A

D G E

1 5 8

9 4 5
3

7

8

8 4 3

∞ ∞ 0

start state

goal state

arc cost

h value

parent pointer

0

1

4 8 9

8 5

g value

43

Example
n g(n) h(n) f (n) h*(n)
S 0 8 8 9
A 1 8 9 9
B 5 4 9 4
C 8 3 11 5
D 4 ∞ ∞ ∞
E 8 ∞ ∞ ∞
G 9 0 9 0

•  h*(n) is the (hypothetical) perfect heuristic.

•  Since h(n) ≤ h*(n) for all n, h is admissible

•  Optimal path = S B G with cost 9.

44

S

C B A

D G E

1 5 8

9 4 5
3

7

8

8 4 3

∞ ∞ 0

cost
h

0

1

4 8 9

8 5

g

Greedy Search
f (n) = h(n)

Node Node  
expanded list

{ S(8) }

 S { C(3) B(4) A(8) }

 C { G(0) B(4) A(8) }

 G { B(4) A(8) }

•  Solution path found is S C G, 3 nodes expanded.

•  Fast!! But NOT optimal.

45

S

C B A

D G E

1 5 8

9 4 5
3

7

8

8 4 3

∞ ∞ 0

cost
h

0

1

4 8 9

8 5

g

A* Search
f (n) = g(n) + h(n)

node exp. nodes list
 { S(8) }

 S { A(9) B(9) C(11) }

 A { B(9) G(10) C(11) D(∞) E(∞) }

 B { G(9) G(10) C(11) D(inf) E(∞) }

 G { C(11) D(∞) E(∞) }

•  Solution path found is S B G, 4 nodes expanded..

•  Still pretty fast, and optimal

46

S

C B A

D G E

1 5 8

9 4 5
3

7

8

8 4 3

∞ ∞ 0

cost
h

0

1

4 8 9

8 5

g

Proof of the Optimality of A*

•  Assume that A* has selected G2, a goal state with a
suboptimal solution (g(G2) > f *).

•  We show that this is impossible.
•  Choose a node n on the optimal path to G.
•  Because h(n) is admissible, f (n) ≤ f *.
•  If we choose G2 instead of n for expansion, f(G2) ≤ f(n).
•  This implies f (G2) ≤ f *.
•  G2 is a goal state: h(G2) = 0, f (G2) = g(G2).
•  Therefore g(G2) ≤ f *
•  Contradiction.

47

Admissible heuristics

E.g., for the 8-puzzle:

•  h1(n) = number of misplaced tiles

•  h2(n) = total Manhattan distance
 (i.e., # of squares each tile is

 from desired location)

•  h1(S) = ?

•  h2(S) = ?

48

Start

Goal

9

Admissible heuristics

E.g., for the 8-puzzle:

•  h1(n) = number of misplaced tiles

•  h2(n) = total Manhattan distance
 (i.e., # of squares each tile is

 from desired location)

•  h1(S) = 8

•  h2(S) = 3+1+2+2+2+3+3+2 = 18

49

Start

Goal

Dealing with Hard Problems

•  For large problems, A* often requires too much space.

•  Two variations conserve memory: IDA* and SMA*

•  IDA* – iterative deepening A*
•  uses successive iteration with growing limits on f. For example,
•  A* but don’t consider any node n where f (n) > 10
•  A* but don’t consider any node n where f (n) > 20
•  A* but don’t consider any node n where f (n) > 30, ...

•  SMA* – Simplified Memory-Bounded A*
•  uses a queue of restricted size to limit memory use.
•  throws away the “oldest” worst solution.

50

What’s a Good Heuristic?

•  If h1(n) < h2(n) ≤ h*(n) for all n, then:
•  Both are admissible
•  h2 is strictly better than (dominates) h1.

•  How do we find one?

1. Relaxing the problem:
•  Remove constraints to create a (much) easier problem
•  Use the solution cost for this problem as the heuristic function

2. Combining heuristics:
•  Take the max of several admissible heuristics
•  Still have an admissible heuristic, and it’s better!

51

What’s a Good Heuristic? (2)

3. Use statistical estimates to compute h
•  May lose admissibility

4. Identify good features, then use a learning
 algorithm to find a heuristic function

•  Also may lose admissibility

•  Why are these a good idea, then?
•  Machine learning can give you answers you don’t “think of”
•  Can be applied to new puzzles without human intervention
•  Often work

52

Some Examples of Heuristics?

•  8-puzzle?
•  Manhattan distance

•  Driving directions?
•  Straight line distance

•  Crossword puzzle?

•  Making a medical diagnosis?

53

Summary: Informed Search

•  Best-first search: general search where the minimum-cost
nodes (according to some measure) are expanded first.

•  Greedy search: uses minimal estimated cost h(n) to the
goal state as measure. Reduces search time but, is neither
complete nor optimal.

•  A* search: combines UCS and greedy search
•  f (n) = g(n) + h(n)
•  A* is complete and optimal, but space complexity is high.
•  Time complexity depends on the quality of the heuristic function.

•  IDA* and SMA* reduce the memory requirements of A*.
54

10

In-class Exercise: Creating Heuristics
8-Puzzle

N-Queens

Boat Problems
Remove 5

Sticks

Water Jug Problem

5 2

Route Planning

55

cabbage

wolf

sheep

In-Class
Exercise S

C B A

D G E

3 1 8

15 20 5
3

7

8

8 4 3

∞ ∞ 0
h value

arc
cost

Apply the following to search this space. At each search step, show:
 the current node being expanded, g(n) (path cost so far), h(n) (heuristic

estimate), f (n) (evaluation function), and h*(n) (true goal distance).

 Depth-first search Breadth-first search A* search
 Uniform-cost search Greedy search

