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Informed Search 
AI Class 5 (Ch. 3.5-3.7) 

Dr. Cynthia Matuszek – CMSC 671 

Based on slides by Dr. Marie desJardin. Some material also adapted from slides by Dr. 
Matuszek @ Villanova University, which are based on Hwee Tou Ng at Berkeley, which 

are based on Russell at Berkeley. Some diagrams are based on AIMA. 

Bookkeeping 

•  Next lecture: 
•  Python for AI 

•  Eight decades of  AI 
•  (okay, 4) 

Today’s Class 

•  Heuristic search 

•  Best-first search 
•  Greedy search 
•  Beam search 
•  A, A* 
•  Examples 

•  Memory-conserving 
variations of A* 

•  Heuristic functions 
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“An	informed	search	
strategy—one	that	uses	
problem	specific	
knowledge…	can	find	
solutions	more	efficiently	
then	an	uninformed	
strategy.”	

–	R&N	pg.	92	

Weak vs. Strong Methods 

•  Weak methods:  
•  Extremely general, not tailored to a specific situation 

•  Examples 
•  Means-ends analysis: the current situation and goal, then look for 

ways to shrink the differences between the two 
•  Space splitting: try to list possible solutions to a problem, then try 

to rule out classes of these possibilities 
•  Subgoaling: split a large problem into several smaller ones that can 

be solved one at a time. 

•  Called “weak” methods because they do not take 
advantage of more powerful domain-specific heuristics 
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Heuristic 

Free On-line Dictionary of  Computing* 
1.   A rule of thumb, simplification, or educated guess  
2.  Reduces, limits, or guides search in particular domains 
3.  Does not guarantee feasible solutions; often used with no 

theoretical guarantee 

WordNet (r) 1.6* 
1.  Commonsense rule (or set of  rules) intended to increase 

the probability of  solving some problem 

*Heavily edited for clarity 5 

Heuristic Search 
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•  Uninformed search is generic 
•  Node selection depends only on shape of  tree and node 

expansion trategy.  

•  Sometimes domain knowledge à Better decision 
•  Knowledge about the specific problem 
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Heuristic Search 
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•  Romania: Aradà Bucharest (for example) 

Heuristic Search 
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•  Romania: 
•  Eyeballing it à certain cities first  

•  They “look closer” to where we are going 

•  Can domain  
knowledge be 
captured in a 
heuristic? 

S

G

Heuristics Examples 
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•  8-puzzle:  
•  # of  tiles in wrong place 

•  8-puzzle (better): 
•  Sum of  distances from goal 

•  Captures distance and 
number of  nodes 

•  Romania: 
•  Straight-line distance from  

start node to Bucharest 

•  Captures “closer to Bucharest” 

Heuristic Function 
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•  All domain-specific knowledge is encoded in  
heuristic function h 

•  h is some estimate of  how desirable a move is 
•  How “close” (we think) it gets us to our goal 

•  Usually: 
•  h(n) ≥ 0:  for all nodes n 
•  h(n) = 0:  n is a goal node 
•  h(n) = ∞: n is a dead end (no goal can be reached from n) 

Example Search Space Revisited 
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Informed Methods Add  
Domain-Specific Information 

•  Goal: select the best path to continue searching 

•  Define h(n) to estimates the “goodness” of node n 
•  h(n) = estimated cost (or distance) of minimal cost path 

from n to a goal state 

•  Heuristic function is: 
•  An estimate of how close we are to a goal 
•  Based on domain-specific information  
•  Computable from the current state description 

12 
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Straight Lines to Budapest (km) 

13 R&N pg. 68, 93 

hSLD(n)

Admissible Heuristics 

•  Admissible heuristics never overestimate cost 
•  They are optimistic – think goal is closer than it is 

•  h(n) ≤ h*(n) 
•  where h*(n) is true cost to reach goal from n 

•  hLSD(Lugoj) = 244
•  Can there be a shorter path?

•  Using admissible heuristics guarantees that the first 
solution found will be optimal 
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Best-First Search 

•  A generic way of referring to informed methods 

•  Use an evaluation function f(n) for each node 
à estimate of “desirability” 
•  f (n) incorporates domain-specific information  
• Different  f (n) à Different searches 
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Best-First Search (more) 

•  Order nodes on the list by  
•  Increasing value of f (n) 

•  Expand most desirable unexpanded node 
•  Implementation:  
•  Order nodes in frontier in decreasing order of desirability 

•  Special cases: 
•  Greedy best-first search 
•  A* search 
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Greedy Best-First Search 

•  Idea: always choose “closest node” to goal 
•  Most likely to lead to a solution quickly 

•  So, evaluate nodes based only  
on heuristic function 
•  f(n) = h(n) 

•  Sort nodes by increasing  
values of f 

•  Select node believed to be closest  
to a goal node (hence “greedy”) 
•  That is, select node with smallest f value 
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Greedy Best-First Search 

•  Admissible?  
•  Why not? 

•  Example: 
•  Greedy search will find: 

 aàbàcàdàeàg ; cost = 5 
•  Optimal solution: 

 aàgàhài ; cost = 3 

•  Not complete (why?) 
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Straight Lines to Budapest (km) 

19 R&N pg. 68, 93 

hSLD(n)

Greedy Best-First Search: Ex. 1 

S

G

224

242

What can we 
say about the 
search space?
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Greedy Best-First Search: Ex. 2 

hSLD(n)
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Greedy Best-First Search: Ex. 2 

Greedy Best-First Search: Ex. 2 
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Greedy Best-First Search: Ex. 2 
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Beam Search 

•  Use an evaluation function f (n) = h(n), but the 
maximum size of the nodes list is k, a fixed constant  

•  Only keeps k best nodes as candidates for expansion, 
and throws the rest away  

•  More space-efficient than greedy search, but may 
throw away a node that is on a solution path  

•  Not complete  

•  Not admissible  
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Algorithm A 

•  Use evaluation function 
f (n) = g(n) + h(n) 

•  g(n) = minimal-cost path from 
any S to state n  

•  Ranks nodes on search 
frontier by estimated cost of 
solution 
•  From start node, through given 

node, to goal 

•  Not complete if h(n) can = ∞ 

•  Not admissible 
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Example Search Space Revisited 
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Example Search Space Revisited 

S 

C B A 

D G E 

1 5 8 

9 4 5 
3 

7 

8 

8 4 3 

∞ ∞ 0 

start state 

goal state 

arc cost 

h value 

parent pointer 

0 

1 

4 8 9 

8 5 

g value 

28 

Algorithm A 

•  Use evaluation function 
f (n) = g(n) + h(n) 

•  g(n) = minimal-cost path from 
any S to state n  

•  Ranks nodes on search 
frontier by estimated cost of 
solution 
•  From start node, through given 

node, to goal 

•  Not complete if h(n) can = ∞ 

•  Not admissible 
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C is chosen 
next to expand 

29 

Algorithm A 
1.	Put	start	node	S	on	the	nodes	list,	called	OPEN		

2.	If	OPEN	is	empty,	exit	with	failure		

3.	Select	node	in	OPEN	with	minimal	f(n)	and	place	on	CLOSED	

4.	If	n	is	a	goal	node,	collect	path	back	to	start;	terminate	

5.	Expand	n,	generating	all	its	successors,	and	attach	to	them	
pointers	back	to	n.		For	each	successor	n'	of	n		
1.	If	n'	is	not	already	on	OPEN	or	CLOSED	
•  put	n'	on	OPEN	
•  compute	h(n'),		g(n')	=	g(n)	+	c(n,n'),		f	(n')	=	g(n')	+	h(n')	

2.	If	n'	is	already	on	OPEN	or	CLOSED	and	if	g(n')	is	lower	for	the	new	
version	of	n',	then:	
•  Redirect	pointers	backward	from	n'	along	path	yielding	lower	g(n').	
•  Put	n'	on	OPEN.		

30 
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Some Observations on A 

•  Perfect heuristic: If  h(n) = h*(n) for all n: 
• Only nodes on the optimal solution path will be 

expanded 

• No extra work will be performed 

•  Null heuristic: If  h(n) = 0 for all n: 
•  This is an admissible heuristic  

• A* acts like Uniform-Cost Search 
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The closer h 
is to h*, the 
fewer extra 
nodes will be 
expanded

Some Observations on A 

•  Better heuristic:  
If  h1(n) < h2(n) ≤ h*(n) for all  
non-goal nodes, h2 is a better  
heuristic than h1 

•  If  A1* uses h1, A2* uses h2,  
à every node expanded by A2* is  
also expanded by A1* 

•  So A1 expands at least as many nodes as A2* 
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We say 
that A2* is 
better 
informed 
than A1*

Quick Terminology Check 
•  What is f (n)? 
•  An evaluation function 

that gives… 
•  A cost estimate of... 
•  The distance from n to G 

•  What is h(n)? 
•  A heuristic function 

that… 
•  Encodes domain 

knowledge about... 
•  The search space 

•  What is h*(n)? 
•  A heuristic function that 

gives the… 

•  True cost to reach goal from n 
•  Why don’t we just use that? 

•  What is g(n)? 
•  The path cost of  getting from 

S to n 
•  describes the “spent” costs of  

the current search 

A* Search 

•  Avoid expanding paths that are already expensive 
•  Combines costs-so-far with expected-costs 

•  A* is complete iff 
•  Branching factor is finite 
•  Every operator has a fixed positive cost  

•  A* is admissible iff 
•  h(n) is admissible 
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A* Search 

•  Idea: Evaluate nodes by combining g(n), the cost of  
reaching the node, with h(n), the cost of  getting from 
the node to the goal. 

•  Evaluation function f(n) = g(n) + h(n) 
•  g(n) = cost so far to reach n 
•  h(n) = estimated cost from n to goal 
•  f(n) = estimated total cost of  path  

      through n to goal 
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A* Example 1 

37 

A* Example 1 
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A* Example 1 
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A* Example 1 
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A* Example 1 
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Algorithm A* 

•  Algorithm A with constraint that h(n) ≤ h*(n) 
•  h*(n) = true cost of the minimal cost path from n to a goal.  

•  Therefore, h(n) is an underestimate of the distance to the 
goal 

•  h() is admissible when h(n) ≤ h*(n) 
•  Guarantees optimality 

•  A* is complete whenever the branching factor is finite, 
and every operator has a fixed positive cost  

•  A* is admissible 

42 
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Example Search Space Revisited 
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Example 
n  g(n)  h(n)  f (n)   h*(n) 
S  0  8  8   9 
A 1  8  9   9 
B 5  4  9   4 
C 8  3  11   5 
D 4  ∞  ∞   ∞ 
E 8  ∞  ∞   ∞ 
G 9  0  9   0 

•  h*(n) is the (hypothetical) perfect heuristic. 

•  Since h(n) ≤ h*(n) for all n, h is admissible 

•  Optimal path = S B G with cost 9. 
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Greedy Search 
f (n) = h(n) 

Node Node  
expanded list

{ S(8) }

     S { C(3) B(4) A(8) }

     C { G(0) B(4) A(8) }

     G { B(4) A(8) } 

•  Solution path found is S C G, 3 nodes expanded.  

•  Fast!! But NOT optimal.  
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A* Search 
f (n) = g(n) + h(n) 

node exp. nodes list
   { S(8) }

 S { A(9) B(9) C(11) }

 A { B(9) G(10) C(11) D(∞) E(∞) }

 B { G(9) G(10) C(11) D(inf) E(∞) }     

 G { C(11) D(∞) E(∞) } 

•  Solution path found is S B G, 4 nodes expanded..   

•  Still pretty fast, and optimal 
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Proof of the Optimality of A* 

•  Assume that A* has selected G2, a goal state with a 
suboptimal solution (g(G2) > f *).  

•  We show that this is impossible.  
•  Choose a node n on the optimal path to G.  
•  Because h(n) is admissible, f (n) ≤ f *.  
•  If we choose G2 instead of n for expansion, f(G2) ≤ f(n). 
•  This implies f (G2) ≤ f *. 
•  G2 is a goal state: h(G2) = 0, f (G2) = g(G2).  
•  Therefore g(G2) ≤ f * 
•  Contradiction.  
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Admissible heuristics 

E.g., for the 8-puzzle: 

•  h1(n) = number of  misplaced tiles 

•  h2(n) = total Manhattan distance 
            (i.e., # of  squares each tile is 

      from desired location) 

 

•  h1(S) = ? 

•  h2(S) = ? 

48 

Start

Goal
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Admissible heuristics 

E.g., for the 8-puzzle: 

•  h1(n) = number of  misplaced tiles 

•  h2(n) = total Manhattan distance 
            (i.e., # of  squares each tile is 

      from desired location) 

 

•  h1(S) = 8 

•  h2(S) = 3+1+2+2+2+3+3+2 = 18  
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Start

Goal

Dealing with Hard Problems 

•  For large problems, A* often requires too much space. 

•  Two variations conserve memory: IDA* and SMA* 

•  IDA* – iterative deepening A*  
•  uses successive iteration with growing limits on f.  For example, 
•  A* but don’t consider any node n where f (n) > 10 
•  A* but don’t consider any node n where f (n) > 20 
•  A* but don’t consider any node n where f (n) > 30, ... 

•  SMA* – Simplified Memory-Bounded A* 
•  uses a queue of restricted size to limit memory use. 
•  throws away the “oldest” worst solution. 
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What’s a Good Heuristic? 

•  If h1(n) < h2(n) ≤ h*(n) for all n, then: 
•  Both are admissible 
•  h2 is strictly better than (dominates) h1. 

•  How do we find one? 

1.  Relaxing the problem:  
•  Remove constraints to create a (much) easier problem 
•  Use the solution cost for this problem as the heuristic function 

2.  Combining heuristics:  
•  Take the max of several admissible heuristics 
•  Still have an admissible heuristic, and it’s better! 
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What’s a Good Heuristic? (2) 

3.  Use statistical estimates to compute h 
•  May lose admissibility 

4.  Identify good features, then use a learning  
 algorithm to find a heuristic function 

•  Also may lose admissibility 

•  Why are these a good idea, then? 
•  Machine learning can give you answers you don’t “think of” 
•  Can be applied to new puzzles without human intervention 
•  Often work 

52 

Some Examples of  Heuristics? 

•  8-puzzle?   
•  Manhattan distance 

•  Driving directions?  
•  Straight line distance 

•  Crossword puzzle?   

•  Making a medical diagnosis? 
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Summary: Informed Search 

•  Best-first search: general search where the minimum-cost 
nodes (according to some measure) are expanded first.  

•  Greedy search: uses minimal estimated cost h(n) to the 
goal state as measure. Reduces search time but, is neither 
complete nor optimal. 

•  A* search: combines UCS and greedy search 
•  f (n) = g(n) + h(n) 
•  A* is complete and optimal, but space complexity is high. 
•  Time complexity depends on the quality of the heuristic function.  

•  IDA* and SMA* reduce the memory requirements of A*.  
54 
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In-class Exercise: Creating Heuristics 
8-Puzzle 

N-Queens 

Boat Problems 
Remove 5 

Sticks 

Water Jug Problem 

5 2 

Route Planning 
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In-Class 
Exercise S 
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Apply the following to search this space.  At each search step, show: 
 the current node being expanded, g(n) (path cost so far), h(n) (heuristic 

estimate), f (n) (evaluation function), and h*(n) (true goal distance). 
 

 Depth-first search   Breadth-first search  A* search 
 Uniform-cost search  Greedy search    


