Artificial Intelligence
Class 4: Uninformed Search (Ch. 3.4)

2N
g

Sor
Dr. Cynthia Matuszek — CMSC ‘ k m: Dr. Marie desJara

Today’s Class

* Uninformed search
‘What does that mean?

“This is the essence of

search—following up

one option now and

* Specific algorithms putting the others
Breadth-first search aside for later, in case
Depth-first search the first choice does

X not lead to a solution.”
Uniform cost search
- R&N pg. 75

Depth-first iterative deepening

» Example search problems revisited

Key Procedures to Define

* EXPAND
Generate all successor nodes of a given node

¢ GOAL-TEST
Test if state satisfies all goal conditions

* QUEUEING-FUNCTION

Used to maintain a ranked list of nodes that are candidates
for expansion

Bookkeeping

* Piazza
Thank you all for using Piazza!
Reminder:
* [posts] on Piazza must follow the academic integrity guidelines

* So post about clarifications, resources, or debugging help, but not
(for example) hints about specific answers, code examples

- HW1

* Guest lecturer next Tuesday

State-Space Search Algorithm

function general-search (problem, QUEUEING-FUNCTION)
; problem describes start state, operators, goal test,
and operator costs
; queueing-function is a comparator function that
ranks two states
;3 returns either a goal node or failure

nodes = MAKE-QUEUE (MAKE -NODE (problem.INITIAL-STATE))
loop

if EMPTY(nodes) then return "failure"

node = REMOVE-FRONT(nodes)

if problem.GOAL-TEST(node.STATE) succeeds

then return node

nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))

;5 Note: The goal test is NOT done when nodes are generated
;5 Note: This algorithm does not detect loops

4

Review: Characteristics

Completeness: Is the algorithm guaranteed to find
a solution (if one exists)?

Optimality: Does it find the optimal solution?

(The solution with the lowest path cost of all possible
solutions)

Time complexity: How long does it take to find a
solution?

Space complexity: How much memory is needed to
perform the search?

R&N pg. 68,80

Generation vs. Expansion Pre-Reading Quiz

. : How does breadth-first search instantiate the EXPAND, GOAL-TEST, and
° Sclectlng a state means maklng that node current QUEUING-FUNCTION components of state space search?

. ‘What does breadth-first search remind you of? (A simple abstract data type)
.
EXP andmg the current state means applymg every How does uniform-cost search instantiate these search components?
legal action to the current state Uniform-cost search may be less familiar.
Do you know another name for this type of search?

« Which generates a new set of nodes Can you give a real-world equivalent/example?

How does depth-first search instantiate these search components?
D/®\ ‘What does depth-first search remind you of?
s N
/

‘Why does it matter WHEN the goal test is applied (expansion time vs.
generation time)?

‘What is admissibility?

R&N pg. 68, 80

Pre-Reading Quiz Pre-Reading Quiz

« How does breadth-first search instantiate the EXPAND, GOAL-TEST, * How does uniform-cost search instantiate these search components?
and QUEUING-FUNCTION components of state space search? Uniform-cost search may be less familiar.

Do you know another name for this type of search?
EXPAND: always expand shallowest unexpanded node Can you give a real-world equivalent/example?
GOAL-TEST: test a node when it is expanded
QUEUEING-FUNCTION: FIFO EXPAND: always expand lowest path cost unexpanded node
+ What does breadth-first search remind you of? (A simple abstract data type) * Store frontier as priority queue
GOAL-TEST: test a node when it is selected for expansion
« First generated node may not be on optimal path
QUEUEING-FUNCTION: priority queue

Pre-Reading Quiz Pre-Reading Quiz

+ How does depth-first search instantiate these search components? * Why does it matter when the goal test is applied (expansion
What does depth-first search remind you of? time vs. generation time)?

* Optimality and complexity of the algorithms are strongly affected!

EXPAND: always expand deepest unexpanded node P Rl plexity 8 ely

GOAL-TEST: test a node when it is expanded

QUEUEING FUNCTION: LIFO FAR
ST

Admissibility Uninformed vs. Informed Search

A heuristic function IS admissible if it never * Uninformed search strategies

overestimates the cost of reaching the goal Use no information about the “direction” of the goal node(s)
Also known as “blind search”

* The estimated cost it estimates is not higher than the Methods: Breadth-first, depth-first, depth-limited, uniform-cost,
lowest possible cost from the current point in the depth-first iterative deepening, bidirectional

path Informed search strategies (next class...)

Use information about the domain to (try to) (usually) head in
the general direction of the goal node(s)

Also known as “heuristic search”

Methods: Hill climbing, best-first, greedy search, beam search,
A, A*

Breadth-First

» Enqueue nodes in FIFO (first-in, first-out) order

 Characteristics:
Complete (meaning?)
Optimal (i.e., admissible) if all operators have the same cost
Otherwise, not optimal but finds solution with shortest path length
Exponential time and space complexity, O(b¢), where:
+ dis the depth of the solution
* bis the branching factor (number of children) at each node

» Takes a long time to find long-path solutions

15

BFS BFS

PO O O © PO ©® ©

Breadth-First: Analysis Breadth-First: O(Example)

+ Takes a long time to find long-path solutions 1+b+b2+...+bd=(b(d+1) - 1)/(b-1) nodes

Must look at all shorter length possibilities first Tree where: d=12

A complete search tree of depth d where each non-leaf Every node at depths 0, ..., 11 has 10 children (b=10)

node has b children: Every node at depth 12 has 0 children
1+ 10+ 100+ 1000 + ... + 1012 = (1013 - 1)/9 =

2 d = (hd+1 _ -
I+b+b*+.. +bi=(1)/(b-1) nodes 0O(1012) nodes in the complete search tree
. If BFS ds 1000 nodes/ d each nod 100

‘What if we expand nodes when they are selected? bytes Ofe :E;I; gz nodes/sec and each node uises
‘Will take 35 years to run in the worst case
Will use 111 terabytes of memory

22

Depth-First (DFS)

* Enqueue nodes on nodes in LIFO (last-in, first-out)
order
That is, nodes used as a stack data structure to order nodes >@
7 N

* Characteristics: ay -

Might not terminate without a “depth bound” RN / N\

« Le., cutting off search below a fixed depth D (“depth-limited search”) 7] /ﬁ V/) 7] 1§ 7{)

=t N S S

Not complete /\ /\ /\ /\
« With or without cycle detection, and with or without a cutoff depth Qb Q} Q) Q\) Q) Qﬂ/ C\\/ (LD
Exponential time, O(b?), but only linear space, O(bd) | Loops?
+ Can find long solutions quickly if lucky Infinite
+ And short solutions slowly if unlucky search
spaces?

23

@ ©
/ N\ /7 N\
CEERORERGENRC)

AN AN ANA SN N
(CRORORORORURORC) CRGRORORORURORC)

A AYNA
D® D MW O

/7 N\
GEERC)

A ANA AN
ORCRORCRORC)! LOJORORURORE)

4

7/ N\
GG

AN
ORCRORC)

AN
ORCRURC)

Depth-First (DFS): Analysis

* DFS:
Can find long solutions quickly if lucky
And short solutions slowly if unlucky

* When search hits a dead end
Can only back up one level at a time*

Even if the “problem” occurs because of a bad operator
choice near the top of the tree

Hence, only does “chronological backtracking”

* Why?

Uniform-Cost (UCS)

Enqueue nodes by path cost:
Let g(n) = cost of path from start node to current node n
Sort nodes by increasing value of g
Identical to breadth-first search if all operators have equal cost

“Dijkstra’s Algorithm” in algorithms literature

“Branch and Bound Algorithm” in operations research literature
Complete (*)

Optimal/Admissible (*)

Admissibility depends on the goal test being applied when a node is removed

from the nodes list, not when its parent node 1s expanded and the node is
first generated

Exponential time and space complexity, O(b%)

37

Uniform-cost search example

Depth-First Iterative Deepening (DFID)

DFS to depth 0 (i.e., treat start node as ontil solution found do:
having no successors) L DFS with depth cutoff c;
Iff no solution found, do DFS to depth 1 c=ct+l

Complete

Optimal/Admissible if all operators have the same cost
Otherwise, not optimal, but guarantees finding solution of shortest length

Time complexity is a little worse than BFS or DFS because nodes near
the top of the search tree are generated multiple times

Because most nodes are near the bottom of a tree, worst case time
complexity is still exponential, O(bd)

41

UCS Implementation

For each frontier node, save the total cost of the
path from the initial state to that node

Expand the frontier node with the lowest path cost
Equivalent to breadth-first if step costs all equal

Equivalent to Dijkstra’s algorithm in general

Uniform-cost search example

* Expansion order:
(S’p7d7bie)a’7r7f’eiG)

(| ol

3 9 1
@8 ; 13 @7 b q ‘v

7\ i INERFaN

P g a

;11@ ©@10

Depth-First Iterative Deepening

If branching factor is b and solution is at depth d, then nodes
at depth d are generated once, nodes at depth d-1 are
generated twice, etc.

Hence bd + 2b@D + ..+ db <=bd / (1 - 1/b)? = O(bd).

If b=4, then worst case is 1.78 * 49, i.e., 78% more nodes searched than

exist at depth d (in the worst case).

Linear space complexity, O(bd), like DFS

Has advantage of both BFS (completeness) and DFS
(limited space, finds longer paths more quickly)

Generally preferred for large state spaces where solution
depth is unknown

Iterative deepening search (c=1)

Iterative deepening search (c=3)

Limit=3 »@®
o o @ Ny N AN o
@ HDDDO BDDDD DMWY @ 9 0 0 0w CRORURGRC)

Depth-First Search @z‘/ @
& b&E#

Expanded node Nodes list
{8}
S0 {A3BIC8}
A3 { D6 EIO GlS Bl CS }
D6 { ElO G18 Bl c8 }
{ GIS BI CS }
{BIC8}
Solution path found is S A G, cost 18
Number of nodes expanded (including goal node) = 5

47

Iterative deepening search (c=2)

Example for Illustrating Search Strategies

Breadth-First Search @f/ @
.y é\& 0 /
Expanded node Nodes list @ é
(8%
S0 {A3BC8}
A3 { Bl C8 Dé ElO GIS)
Bl {CB DﬁElDGIS GZI }
CH { Dé ElO GIS GZl G13 }
{ EID G|8 G2| GIB }
{ GlB Gll G13 }
{ GZl G13 }
Solution path found is S A G, cost 18
Number of nodes expanded (including goal node) = 7

48

Uniform-Cost Search @7 @
7P kA
Expanded node Nodes list @ A:) (g 8 Depth-First Search:

{80} Expanded nodes: SADE G
Solution found: S A G (cost 18)

,V@N
Breadth-First Search: @ @

Expanded nodes: SABCDEG 3 7 15
Solution found: S A G (cost 18) % 20 /5
Uniform-Cost Search: @

Expanded nodes: SADBCEG

Solution found: S C G (cost 13)
This is the only uninformed search that worries about costs.

How they Perform

SO { Bl A3 CS }
Bl { A3 CB GZI }
A3 {DSCSEI0 GI8 G2! }
D6 {CSEI0G8G!}
CB { ElO G13 GlS GZl }
El0 { G13 GIS GZI }
GB3 {GIBG2)
Solution path found is S C G, cost 13

Iterative-Deepening Search:
Number of nodes expanded (including goal node) = 7

nodes expanded: SSABCSADEG
49

Bi-directional Search

Alternate searching from

Bi-directional Search

Alternate searching from

start state > goal i‘ # start state > goal i‘ #
goal state > start = goal state - start =

% 1. Alnn Lomansl

For next time: What's a real
world problem where you can’t

generate predecessors!?
predecessor’” states.

Stop when the frontiers intersect. #

Works well only when there are
unique start and goal states

Requires ability to generate
“predecessor” states.

¢

Can (sometimes) find a solution fast Can (sometimes) find a solution fast

Comparing Search Strategies

Avoiding Repeated States

‘Ways to reduce size of state space (with increasing

Breadth- Uniform- Depth- Depth- Iterative Bidirectional .
computational costs)

First Cost First Limited Deepening (if applicable)

m I ir2 . . .
- y 5 ” b v b In increasing order of effectiveness:

Optimal? No No
Complete? Yes Yes No Yes,if [> d

Criterion

Do not return to the state you just came from.
Do not create paths with cycles in them.
Do not generate any state that was ever created before.

Effect depends on frequency of loops in state space.

A State Space that Generates an

Exponentially Growing Search Space HOly Grail Search ,7® : ©
Expanded node Nodeslist (D) é\éo/

{80}
S0 {C3A3B!}
cs {GBA3B!}
G13 {A3 Bl }

Solution path found is S C G, cost 13 (optimal)
Number of nodes expanded (including goal node) = 3
(minimum possible!)

56

Holy Grail Search 8-Puzzle Revisited

‘Why not go straight to the solution, without * What’s a good E E

algorithm?
1
Depth-first search? E

any wasted detours off to the side?

Breadth-first search? :
<foreshadowing> If only we knew where . ’
we were headed... </foreshadowing> Uniform-cost?
Iterative deepening?

“Satisficing”

Wikipedia:

“Satisficing is ... searching until
an acceptability threshold is met”

Contrast with optimality Another piece of

Satisficable problems do not get more :r:bl:m
benefit from finding an optimal solution Elnicion

A combination of satisfy and suffice

Introduced by Herbert A. Simon in 1956

59

