
12/6/17

1

Slides drawn from Drs. Tim Finin, Paula Matuszek, Rich Sutton, Andy Barto, and Marie desJardins, with thanks

Machine Learning,
Reinforcement Learning
AI Class 25 (Ch. 21.1, 20.2–20.2.5, 20.3)

Today’s Class

•  Machine Learning: A quick retrospective

•  Reinforcement Learning: What is it?

•  Next time:
•  The EM algorithm
•  Monte Carlo and Temporal Difference

•  Upcoming classes:
•  EM (more)
•  Ethics??
•  Tournament

Review: What is ML?

•  ML is a way to get a computer (in our parlance, a
system) to do things without having to explicitly
describe what steps to take.

•  By giving it examples (training data)

•  Or by giving it feedback

•  It can then look for patterns which explain or
predict what happens.

•  The learned system of beliefs is called a model.

3

Revew: Architecture of a ML System

•  Every machine learning system has four parts:
1.  A representation or model of what is being

learned.
2.  An actor: Uses the representation and actually

does something.

3.  A critic: Provides feedback.

4.  A learner: Modifies the representation / model,
using the feedback.

4

Review: Representation

•  A learning system must have a representation or
model of what is being learned.

•  This is what changes based on experience.

•  In a machine learning system this may be:
•  A mathematical model or formula
•  A set of rules
•  A decision tree
•  A policy
•  Or some other form of information

6

Review: Formalizing Agents

•  Given:
•  A state space S

•  A set of actions a1, …, ak including their results

•  Reward value at the end of each trial (series of action)
(may be positive or negative)

•  Output:
•  A mapping from states to actions

•  Which is a policy, π

7

12/6/17

2

Learning Without a Model

•  We saw how to learn a value function and/or a policy from a
transition model

•  What if we don’t have a transition model?

•  Idea #1: Build one
•  Explore the environment for a long time
•  Record all transitions
•  Learn the transition model
•  Apply value iteration/policy iteration
•  Slow, requires a lot of exploration, no intermediate learning

•  Idea #2: Learn a value function (or policy) directly from
interactions with the environment, while exploring

Reinforcement Learning

•  We often have an agent which has a task to perform
•  It takes some actions in the world

•  At some later point, gets feedback on how well it did

•  The agent performs the same task repeatedly

•  This problem is called reinforcement learning:
•  The agent gets positive reinforcement for tasks done well

•  And gets negative reinforcement for tasks done poorly

•  Must somehow figure out which actions to take next time

9

Animals Game

•  Human: I’m thinking of an animal.
•  Computer: Is it a bird?
•  Human: No.
•  Computer: Is it a frog?
•  Human: No.
•  Computer: What is it?
•  Human: A mouse.
•  Computer: Tell me a question that distinguishes a frog from

a mouse.
•  Human: Does it have fur?
•  Computer: What is the answer for a frog?
•  Human: No.

10

Animals Behind the Scene

11

Is it a bird?

Is it a penguin?

Yes

Does it have fur?

No

Is it a mouse? Is it a frog?

Yes No

After several rounds...

Computer: Is it a bird?
Human: No
Computer: Is it a frog?
Human: No
Computer: What is it?
Human: A mouse
Computer: Tell me a
question that distinguishes
a frog from a mouse.
Human: Does it have fur?
Computer: What is the
answer for a frog?
Human: no

Animals Guessing Game Architecture

•  All of the parts of ML Architecture:
•  The Representation is a sequence of questions and pairs

of yes/no answers (called a binary decision tree).

•  The Actor “walks” the tree, interacting with a human;
at each question it chooses whether to follow the “yes”
branch or the “no” branch.

•  The Critic is the human player telling the game whether
it has guessed correctly.

•  The Learner elicits new questions and adds questions,
guesses and branches to the tree.

12

Reinforcement Learning

•  This is a simple form of Reinforcement Learning

•  Feedback is at the end, on a series of actions.

•  Very early concept in Artificial Intelligence!

•  Arthur Samuels’ checker
program was a simple
reinforcement based learner,
initially developed in 1956.

•  In 1962 it beat a human
checkers master.

www-03.ibm.com/ibm/history/ibm100/us/en/icons/ibm700series/impacts/

12/6/17

3

Reinforcement Learning (cont.)

•  Goal: agent acts in the world to maximize its
rewards

•  Agent has to figure out what it did that made it get
that reward/punishment
•  This is known as the credit assignment problem

•  RL can be used to train computers to do many tasks
•  Backgammon and chess playing
•  Job shop scheduling
•  Controlling robot limbs

14

Simple Example

•  Learn to play checkers
•  Two-person game

•  8x8 boards, 12 checkers/
side

•  relatively simple set of
rules:
http://www.darkfish.com/
checkers/rules.html

•  Goal is to eliminate all
your opponent’s pieces

https://pixabay.com/en/checker-board-black-game-pattern-29911

Representing Checkers

•  First we need to represent the game

•  To completely describe one step in the game you need
•  A representation of the game board.

•  A representation of the current pieces

•  A variable which indicates whose turn it is

•  A variable which tells you which side is “black”

•  There is no history needed

•  A look at the current board setup gives you
a complete picture of the state of the game

16

which makes it �
a ___ problem?

Representing Rules

•  Second, we need to represent the rules

•  Represented as a set of allowable moves given board state
•  If a checker is at row x, column y, and row x+1 column y±1 is empty,

it can move there.
•  If a checker is at (x,y), a checker of the opposite color is at (x+1, y+1),

and (x+2,y+2) is empty, the checker must move there, and remove the
“jumped” checker from play.

•  There are additional rules, but all can be expressed in terms
of the state of the board and the checkers.

•  Each rule includes the outcome of the relevant action in
terms of the state.

17

What Do We Want to Learn

•  Given
•  A description of some state of the game

•  A list of the moves allowed by the rules

•  What move should we make?

•  Typically more than one move is possible
•  Need strategies, heuristics, or hints about what move to make

•  This is what we are learning

•  We learn from whether the game was won or lost
•  Information to learn from is sometimes called “training signal”

20

Simple Checkers Learning

•  Can represent some heuristics in the same
formalism as the board and rules
•  If there is a legal move that will create a king, take it.
•  If checkers at (7,y) and (8,y-1) or (8,y+1) is free, move there.

•  If there are two legal moves, choose the one that moves a
checker farther toward the top row
•  If checker(x,y) and checker(p,q) can both move, and x>p, move

checker(x,y).

•  But then each of these heuristics needs some kind of
priority or weight.

21

12/6/17

4

Formalization for RL Agent

•  Given:
•  A state space S

•  A set of actions a1, …, ak including their results

•  A set of heuristics for resolving conflict among actions

•  Reward value at the end of each trial (series of action)
(may be positive or negative)

•  Output:
•  A policy (a mapping from states to preferred actions)

22

Learning Agent

•  The general algorithm for this learning agent is:
•  Observe some state

•  If it is a terminal state
•  Stop

•  If won, increase the weight on all heuristics used

•  If lost, decrease the weight on all heuristics used

•  Otherwise choose an action from those possible in that
state, using heuristics to select the preferred action

•  Perform the action

23

Policy

•  A complete mapping from states to actions
•  There must be an action for each state
•  There may be more than one action
•  Not necessarily optimal

•  The goal of a learning agent is to tune the policy so that
the preferred action is optimal, or at least good.
•  analogous to training a classifier

•  Checkers
•  Trained policy includes all legal actions, with weights
•  “Preferred” actions are weighted up

24

Approaches

•  Learn policy directly: Discover function mapping
from states to actions
•  Could be directly learned values
•  Ex: Value of state which removes last opponent checker is +1.

•  Or a heuristic function which has itself been trained

•  Learn utility values for states (value function)
•  Estimate the value for each state

•  Checkers:
•  How happy am I with this state that turns a man into a king?

25

Value Function

•  The agent knows what state it is in

•  It has actions it can perform in each state

•  Initially, don’t know the value of any of the states

•  If the outcome of performing an action at a state is
deterministic, then the agent can update the utility
value U() of states:
•  U(oldstate) = reward + U(newstate)

•  The agent learns the utility values of states as it works
its way through the state space

26

Learning States and Actions

•  A typical approach is:

•  At state S choose, some action A

•  Taking us to new State S1
•  If S1 has a positive value: increase value of A at S.
•  If S1has a negative value: decrease value of A at S.
•  If S1 is new, initial value is unknown: value of A unchanged.

•  One complete learning pass or trial eventually gets to a
terminal, deterministic state. (E.g., “win” or “lose”)

•  Repeat until? Convergence? Some performance level?

27

12/6/17

5

Selecting an Action

•  Simply choose action with highest (current)
expected utility?

•  Problem: each action has two effects
•  Yields a reward on current sequence
•  Gives information for learning future sequences

•  Trade-off: immediate good for long-term well-being
•  Like trying a shortcut: might get lost, might find quicker

path

•  Exploration vs. exploitation again.

28

Exploration vs. Exploitation

•  Problem with naïve reinforcement learning:
•  What action to take?
•  Best apparent action, based

on learning to date
•  Greedy strategy
•  Often prematurely converges to a suboptimal policy!

•  Random (or unknown) action
•  Will cover entire state space
•  Very expensive and slow to learn!

•  When to stop being random?

•  Balance exploration (try random actions) with exploitation
(use best action so far)

} Exploitation

} Exploration

More on Exploration

•  Agent may sometimes choose to explore suboptimal
moves in hopes of finding better outcomes
•  Only by visiting all states frequently enough can we guarantee

learning the true values of all the states

•  When the agent is learning, ideal would be to get
accurate values for all states
•  Even though that may mean getting a negative outcome

•  When agent is performing, ideal would be to get
optimal outcome

•  A learning agent should have an exploration policy

30

Exploration Policy

•  Wacky approach (exploration): act randomly in hopes
of eventually exploring entire environment
•  Choose any legal checkers move

•  Greedy approach (exploitation): act to maximize utility
using current estimate
•  Choose moves that have in the past led to wins

•  Reasonable balance: act more wacky (exploratory)
when agent has little idea of environment; more greedy
when the model is close to correct
•  Suppose you know no checkers strategy?
•  What’s the best way to get better?

31

Example: N-Armed Bandits

•  A row of slot machines

•  Which to play and how often?

•  State Space is a set of machines
•  Each has cost, payout, and percentage values

•  Action is pull a lever.

•  Each action has a positive or negative result
•  …which then adjusts the utility of that action (pulling

that lever)

32

¢25�
$100�
0.1%

¢95�
$200�
0.6%

$10�
$900�
10%

N-Armed Bandits Example

•  Each action initialized to a standard payout

•  Result is either some cash (a win) or none (a lose)

•  Exploration: Try things until we have estimates for payouts

•  Exploitation: When we have some idea of the value of each
action, choose the best.

•  Clearly this is a heuristic.

•  No proof we ever find the best lever to pull!
•  The more exploration we can do the better our model
•  But the higher the cost over multiple trials

33

After some # of successful trials, or
with some statistical confidence,
or when our value function isn’t
changing (much), or...

12/6/17

6

RL Summary 1:

•  Reinforcement learning systems
•  Learn series of actions or decisions, rather than a single

decision

•  Based on feedback given at the end of the series

•  A reinforcement learner has
•  A goal

•  Carries out trial-and-error search

•  Finds the best paths toward that goal

34

RL Summary 2:

•  A typical reinforcement learning system is an active
agent, interacting with its environment.

•  It must balance:
•  Exploration: trying different actions and sequences of

actions to discover which ones work best
•  Exploitation (achievement): using sequences which have

worked well so far

•  Must learn successful sequences of actions in an
uncertain environment

35

RL Summary 3

•  Very hot area of research at the moment

•  There are many more sophisticated RL algorithms
•  Most notably: probabilistic approaches

•  Applicable to game-playing, search, finance, robot
control, driving, scheduling, diagnosis, …

•  Next time: Clustering, k-means and EM

36

