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Slides drawn from Drs. Tim Finin, Paula Matuszek, Rich Sutton, Andy Barto, and Marie desJardins, with thanks 

Machine Learning, 
Reinforcement Learning 
AI Class 25 (Ch. 21.1, 20.2–20.2.5, 20.3) 

Today’s Class 

•  Machine Learning: A quick retrospective 

•  Reinforcement Learning: What is it? 

•  Next time: 
•  The EM algorithm 
•  Monte Carlo and Temporal Difference 

•  Upcoming classes: 
•  EM (more) 
•  Ethics?? 
•  Tournament 

Review: What is ML? 

•  ML is a way to get a computer (in our parlance, a 
system) to do things without having to explicitly 
describe what steps to take. 

•  By giving it examples (training data)  

•  Or by giving it feedback 

•  It can then look for patterns which explain or 
predict what happens. 

•  The learned system of  beliefs is called a model. 
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Revew: Architecture of  a ML System 

•  Every machine learning system has four parts: 
1.  A representation or model of  what is being 

learned. 
2.  An actor: Uses the representation and actually 

does something. 

3.  A critic: Provides feedback.  

4.  A learner: Modifies the representation / model, 
using the feedback. 
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Review: Representation 

•  A learning system must have a representation or 
model of  what is being learned. 

•  This is what changes based on experience. 

•  In a machine learning system this may be: 
•  A mathematical model or formula 
•  A set of  rules 
•  A decision tree 
•  A policy 
•  Or some other form of  information 
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Review: Formalizing Agents 

•  Given: 
•  A state space S 

•  A set of  actions a1, …, ak including their results 

•  Reward value at the end of  each trial (series of  action) 
(may be positive or negative) 

•  Output: 
•  A mapping from states to actions 

•  Which is a policy, π 
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Learning Without a Model 

•  We saw how to learn a value function and/or a policy from a 
transition model 

•  What if  we don’t have a transition model? 

•  Idea #1: Build one 
•  Explore the environment for a long time 
•  Record all transitions 
•  Learn the transition model 
•  Apply value iteration/policy iteration 
•  Slow, requires a lot of  exploration, no intermediate learning 

•  Idea #2: Learn a value function (or policy) directly from 
interactions with the environment, while exploring 

Reinforcement Learning 

•  We often have an agent which has a task to perform 
•  It takes some actions in the world 

•  At some later point, gets feedback on how well it did  

•  The agent performs the same task repeatedly 

•  This problem is called reinforcement learning:  
•  The agent gets positive reinforcement for tasks done well 

•  And gets negative reinforcement for tasks done poorly 

•  Must somehow figure out which actions to take next time 
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Animals Game 

•  Human: I’m thinking of  an animal. 
•  Computer: Is it a bird? 
•  Human: No. 
•  Computer: Is it a frog? 
•  Human: No. 
•  Computer: What is it? 
•  Human: A mouse. 
•  Computer: Tell me a question that distinguishes a frog from 

a mouse. 
•  Human: Does it have fur? 
•  Computer: What is the answer for a frog? 
•  Human: No. 

10 

Animals Behind the Scene 
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Is it a bird?

Is it a penguin?

Yes

Does it have fur?

No

Is it a mouse? Is it a frog?

Yes No

After several rounds...

Computer: Is it a bird?
Human: No
Computer: Is it a frog?
Human: No
Computer: What is it?
Human: A mouse
Computer: Tell me a 
question that distinguishes 
a frog from a mouse.
Human: Does it have fur?
Computer: What is the 
answer for a frog?
Human: no

Animals Guessing Game Architecture 

•  All of  the parts of  ML Architecture: 
•  The Representation is a sequence of  questions and pairs 

of  yes/no answers (called a binary decision tree). 

•  The Actor “walks” the tree, interacting with a human; 
at each question it chooses whether to follow the “yes” 
branch or the “no” branch. 

•  The Critic is the human player telling the game whether 
it has guessed correctly. 

•  The Learner elicits new questions and adds questions, 
guesses and branches to the tree. 
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Reinforcement Learning 

•  This is a simple form of  Reinforcement Learning 

•  Feedback is at the end, on a series of  actions. 

•  Very early concept in Artificial Intelligence! 

•  Arthur Samuels’ checker  
program was a simple  
reinforcement based learner,  
initially developed in 1956. 

•  In 1962 it beat a human  
checkers master. 

www-03.ibm.com/ibm/history/ibm100/us/en/icons/ibm700series/impacts/



12/6/17

3

Reinforcement Learning (cont.) 

•  Goal: agent acts in the world to maximize its 
rewards 

•  Agent has to figure out what it did that made it get 
that reward/punishment 
•  This is known as the credit assignment problem 

•  RL can be used to train computers to do many tasks 
•  Backgammon and chess playing 
•  Job shop scheduling  
•  Controlling robot limbs 
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Simple Example 

•  Learn to play checkers 
•  Two-person game 

•  8x8 boards, 12 checkers/
side 

•  relatively simple set of  
rules: 
http://www.darkfish.com/
checkers/rules.html 

•  Goal is to eliminate all 
your opponent’s pieces 

https://pixabay.com/en/checker-board-black-game-pattern-29911

Representing Checkers 

•  First we need to represent the game 

•  To completely describe one step in the game you need 
•  A representation of  the game board.  

•  A representation of  the current pieces 

•  A variable which indicates whose turn it is 

•  A variable which tells you which side is “black” 

•  There is no history needed 

•  A look at the current board setup gives you  
a complete picture of  the state of  the game 
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which makes it �
a ___ problem?

Representing Rules 

•  Second, we need to represent the rules 

•  Represented as a set of allowable moves given board state 
•  If  a checker is at row x, column y, and row x+1 column y±1 is empty, 

it can move there. 
•  If  a checker is at (x,y), a checker of  the opposite color is at (x+1, y+1), 

and (x+2,y+2) is empty, the checker must move there, and remove the 
“jumped” checker from play. 

•  There are additional rules, but all can be expressed in terms 
of  the state of  the board and the checkers. 

•  Each rule includes the outcome of  the relevant action in 
terms of  the state. 
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What Do We Want to Learn 

•  Given  
•  A description of  some state of  the game 

•  A list of  the moves allowed by the rules 

•  What move should we make? 

•  Typically more than one move is possible 
•  Need strategies, heuristics, or hints about what move to make 

•  This is what we are learning 

•  We learn from whether the game was won or lost 
•  Information to learn from is sometimes called “training signal” 
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Simple Checkers Learning 

•  Can represent some heuristics in the same 
formalism as the board and rules 
•  If  there is a legal move that will create a king, take it. 
•  If  checkers at (7,y) and (8,y-1) or (8,y+1) is free, move there. 

•  If  there are two legal moves, choose the one that moves a 
checker farther toward the top row 
•  If  checker(x,y) and checker(p,q) can both move, and x>p, move 

checker(x,y). 

•  But then each of  these heuristics needs some kind of  
priority or weight. 

21 



12/6/17

4

Formalization for RL Agent 

•  Given: 
•  A state space S 

•  A set of  actions a1, …, ak including their results 

•  A set of  heuristics for resolving conflict among actions 

•  Reward value at the end of  each trial (series of  action) 
(may be positive or negative)  

•  Output: 
•  A policy (a mapping from states to preferred actions) 
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Learning Agent 

•  The general algorithm for this learning agent is: 
•  Observe some state 

•  If  it is a terminal state 
•  Stop 

•  If  won, increase the weight on all heuristics used 

•  If  lost, decrease the weight on all heuristics used 

•  Otherwise choose an action from those possible in that 
state, using heuristics to select the preferred action 

•  Perform the action 
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Policy 

•  A complete mapping from states to actions 
•  There must be an action for each state 
•  There may be more than one action 
•  Not necessarily optimal 

•  The goal of  a learning agent is to tune the policy so that 
the preferred action is optimal, or at least good. 
•  analogous to training a classifier 

•  Checkers 
•  Trained policy includes all legal actions, with weights 
•  “Preferred” actions are weighted up 
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Approaches 

•  Learn policy directly: Discover function mapping 
from states to actions 
•  Could be directly learned values 
•  Ex: Value of  state which removes last opponent checker is +1. 

•  Or a heuristic function which has itself  been trained 

•  Learn utility values for states (value function) 
•  Estimate the value for each state 

•  Checkers:  
•  How happy am I with this state that turns a man into a king? 
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Value Function 

•  The agent knows what state it is in 

•  It has actions it can perform in each state 

•  Initially, don’t know the value of  any of  the states 

•  If  the outcome of  performing an action at a state is 
deterministic, then the agent can update the utility 
value U() of  states: 
•  U(oldstate) = reward + U(newstate)  

•  The agent learns the utility values of  states as it works 
its way through the state space 
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Learning States and Actions 

•  A typical approach is: 

•  At state S choose, some action A 

•  Taking us to new State S1 
•  If  S1 has a positive value: increase value of  A at S. 
•  If  S1has a negative value: decrease value of  A at S. 
•  If  S1 is new, initial value is unknown: value of  A unchanged. 

•  One complete learning pass or trial eventually gets to a 
terminal, deterministic state. (E.g., “win” or “lose”) 

•  Repeat until? Convergence? Some performance level? 
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Selecting an Action 

•  Simply choose action with highest (current) 
expected utility? 

•  Problem: each action has two effects 
•  Yields a reward on current sequence 
•  Gives information for learning future sequences 

•  Trade-off: immediate good for long-term well-being 
•  Like trying a shortcut: might get lost, might find quicker 

path 

•  Exploration vs. exploitation again. 
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Exploration vs. Exploitation 

•  Problem with naïve reinforcement learning: 
•  What action to take? 
•  Best apparent action, based 

on learning to date 
•  Greedy strategy 
•  Often prematurely converges to a suboptimal policy! 

•  Random (or unknown) action 
•  Will cover entire state space 
•  Very expensive and slow to learn! 

•  When to stop being random? 

•  Balance exploration (try random actions) with exploitation 
(use best action so far) 

} Exploitation

} Exploration

More on Exploration 

•  Agent may sometimes choose to explore suboptimal 
moves in hopes of  finding better outcomes 
•  Only by visiting all states frequently enough can we guarantee 

learning the true values of  all the states 

•  When the agent is learning, ideal would be to get 
accurate values for all states 
•  Even though that may mean getting a negative outcome 

•  When agent is performing, ideal would be to get 
optimal outcome 

•  A learning agent should have an exploration policy 
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Exploration Policy 

•  Wacky approach (exploration): act randomly in hopes 
of  eventually exploring entire environment 
•  Choose any legal checkers move 

•  Greedy approach (exploitation): act to maximize utility 
using current estimate 
•  Choose moves that have in the past led to wins 

•  Reasonable balance: act more wacky (exploratory) 
when agent has little idea of  environment; more greedy 
when the model is close to correct 
•  Suppose you know no checkers strategy?  
•  What’s the best way to get better? 
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Example: N-Armed Bandits 

•  A row of  slot machines 

•  Which to play and how often? 

•  State Space is a set of  machines  
•  Each has cost, payout, and percentage values 

•  Action is pull a lever.  

•  Each action has a positive or negative result 
•  …which then adjusts the utility of  that action (pulling 

that lever) 
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¢25�
$100�
0.1%

¢95�
$200�
0.6%

$10�
$900�
10%

N-Armed Bandits Example 

•  Each action initialized to a standard payout 

•  Result is either some cash (a win) or none (a lose) 

•  Exploration: Try things until we have estimates for payouts 

•  Exploitation: When we have some idea of  the value of  each 
action, choose the best. 

•  Clearly this is a heuristic. 

•  No proof  we ever find the best lever to pull! 
•  The more exploration we can do the better our model 
•  But the higher the cost over multiple trials 
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After some # of successful trials, or 
with some statistical confidence, 
or when our value function isn’t 
changing (much), or...
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RL Summary 1: 

•  Reinforcement learning systems 
•  Learn series of  actions or decisions, rather than a single 

decision 

•  Based on feedback given at the end of  the series 

•  A reinforcement learner has 
•  A goal 

•  Carries out trial-and-error search  

•  Finds the best paths toward that goal 
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RL Summary 2: 

•  A typical reinforcement learning system is an active 
agent, interacting with its environment. 

•  It must balance: 
•  Exploration: trying different actions and sequences of  

actions to discover which ones work best 
•  Exploitation (achievement): using sequences which have 

worked well so far 

•  Must learn successful sequences of actions in an 
uncertain environment 
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RL Summary 3 

•  Very hot area of  research at the moment 

•  There are many more sophisticated RL algorithms  
•  Most notably: probabilistic approaches 

•  Applicable to game-playing, search, finance, robot 
control, driving, scheduling, diagnosis, … 

•  Next time: Clustering, k-means and EM 
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