Today’s Class

• Machine Learning: A quick retrospective
• Reinforcement Learning: What is it?
• Next time:
 - The EM algorithm
 - Monte Carlo and Temporal Difference
• Upcoming classes:
 - EM (more)
 - Ethics??
 - Tournament

Review: What is ML?

• ML is a way to get a computer (in our parlance, a system) to do things without having to explicitly describe what steps to take.
• By giving it examples (training data)
• Or by giving it feedback
• It can then look for patterns which explain or predict what happens.
• The learned system of beliefs is called a model.

Review: Architecture of a ML System

• Every machine learning system has four parts:
 1. A representation or model of what is being learned.
 2. An actor: Uses the representation and actually does something.
 3. A critic: Provides feedback.
 4. A learner: Modifies the representation / model, using the feedback.

Review: Representation

• A learning system must have a representation or model of what is being learned.
• This is what changes based on experience.
• In a machine learning system this may be:
 - A mathematical model or formula
 - A set of rules
 - A decision tree
 - A policy
 - Or some other form of information

Review: Formalizing Agents

• Given:
 - A state space S
 - A set of actions a_1, a_2, including their results
 - Reward value at the end of each trial (series of action) (may be positive or negative)
• Output:
 - A mapping from states to actions
 - Which is a policy, π
Learning Without a Model

- We saw how to learn a value function and/or a policy from a transition model.
- What if we don't have a transition model?
 - Idea #1: Build one
 - Explore the environment for a long time
 - Record all transitions
 - Learn the transition model
 - Apply value iteration/policy iteration
 - Slow, requires a lot of exploration, no intermediate learning
 - Idea #2: Learn a value function (or policy) directly from interactions with the environment, while exploring

Reinforcement Learning

- We often have an agent which has a task to perform
- It takes some actions in the world
- At some later point, gets feedback on how well it did
- The agent performs the same task repeatedly
- This problem is called reinforcement learning:
 - The agent gets positive reinforcement for tasks done well
 - And gets negative reinforcement for tasks done poorly
 - Must somehow figure out which actions to take next time

Animals Game

- Human: I'm thinking of an animal.
- Computer: Is it a bird?
- Human: No.
- Computer: Is it a frog?
- Human: No.
- Computer: Is it a mouse?
- Human: No.
- Human: Does it have fur?
- Computer: What is the answer for a frog?
- Human: No.

Animals Behind the Scene

- Is it a bird?
- Yes
- No
- Is it a penguin?
- Yes
- No
- Does it have fur?
- Is it a mouse?
- Yes
- No
- Is it a frog?
- After several rounds...

Animals Guessing Game Architecture

- All of the parts of ML Architecture:
 - The Representation is a sequence of questions and pairs of yes/no answers (called a binary decision tree).
 - The Actor “walks” the tree, interacting with a human; at each question it chooses whether to follow the “yes” branch or the “no” branch.
 - The Critic is the human player telling the game whether it has guessed correctly.
 - The Learner elicits new questions and adds questions, guesses and branches to the tree.

Reinforcement Learning

- This is a simple form of Reinforcement Learning
- Feedback is at the end, on a series of actions.
- Very early concept in Artificial Intelligence!
- Arthur Samuel's checker program was a simple reinforcement based learner, initially developed in 1956.
- In 1962 it beat a human checkers master.
Reinforcement Learning (cont.)

- Goal: agent acts in the world to maximize its rewards
- Agent has to figure out what it did that made it get that reward/punishment
 - This is known as the credit assignment problem
- RL can be used to train computers to do many tasks
 - Backgammon and chess playing
 - Job shop scheduling
 - Controlling robot limbs

Simple Example

- Learn to play checkers
 - Two-person game
 - 8x8 boards, 12 checkers/side
 - relatively simple set of rules:
 - Goal is to eliminate all your opponent’s pieces

Representing Checkers

- First we need to represent the game
- To completely describe one step in the game you need
 - A representation of the game board.
 - A representation of the current pieces
 - A variable which indicates whose turn it is
 - A variable which tells you which side is “black”
- There is no history needed
- A look at the current board setup gives you a complete picture of the state of the game

Representing Rules

- Second, we need to represent the rules
- Represented as a set of allowable moves given board state
 - If a checker is at row x, column y, and row x+1 column y+1 is empty, it can move there.
 - If a checker is at (x,y), a checker of the opposite color is at (x+1, y+1), and (x+2,y+2) is empty, the checker must move there, and remove the “jumped” checker from play.
- There are additional rules, but all can be expressed in terms of the state of the board and the checkers.
- Each rule includes the outcome of the relevant action in terms of the state.

What Do We Want to Learn

- Given
 - A description of some state of the game
 - A list of the moves allowed by the rules
 - What move should we make?
- Typically more than one move is possible
 - Need strategies, heuristics, or hints about what move to make
 - This is what we are learning
- We learn from whether the game was won or lost
 - Information to learn from is sometimes called “training signal”

Simple Checkers Learning

- Can represent some heuristics in the same formalism as the board and rules
 - If there is a legal move that will create a king, take it.
 - If there are two legal moves, choose the one that moves a checker farther toward the top row
 - If checker(x,y) and checker(p,q) can both move, and x>p, move checker(x,y)
 - But then each of these heuristics needs some kind of priority or weight.
Formalization for RL Agent

- Given:
 - A state space S
 - A set of actions a_1, \ldots, a_k including their results
 - A set of heuristics for resolving conflict among actions
 - Reward value at the end of each trial (series of action) (may be positive or negative)

- Output:
 - A policy (a mapping from states to preferred actions)

Learning Agent

- The general algorithm for this learning agent is:
 - Observe some state
 - If it is a terminal state
 - Stop
 - If won, increase the weight on all heuristics used
 - If lost, decrease the weight on all heuristics used
 - Otherwise choose an action from those possible in that state, using heuristics to select the preferred action
 - Perform the action

Policy

- A complete mapping from states to actions
 - There must be an action for each state
 - There may be more than one action
 - Not necessarily optimal

- The goal of a learning agent is to tune the policy so that the preferred action is optimal, or at least good.
 - analogous to training a classifier

- Checkers
 - Trained policy includes all legal actions, with weights
 - “Preferred” actions are weighted up

Approaches

- Learn policy directly: Discover function mapping from states to actions
 - Could be directly learned values
 - Ex: Value of state which removes last opponent checker is $+1$.
 - Or a heuristic function which has itself been trained

- Learn utility values for states (value function)
 - Estimate the value for each state
 - Checkers:
 - How happy am I with this state that turns a man into a king?

Value Function

- The agent knows what state it is in
- It has actions it can perform in each state
- Initially, don’t know the value of any of the states
- If the outcome of performing an action at a state is deterministic, then the agent can update the utility value $U()$ of states:
 - $U(\text{oldstate}) = \text{reward} + U(\text{newstate})$
- The agent learns the utility values of states as it works its way through the state space

Learning States and Actions

- A typical approach is:
 - At state S choose, some action A: How?
 - Taking us to new State S'
 - If S' has a positive value: increase value of A at S
 - If S' has a negative value: decrease value of A at S
 - If S' is new, initial value is unknown: value of A unchanged.
 - One complete learning pass or trial eventually gets to a terminal, deterministic state. (E.g., “win” or “lose”)
 - Repeat until? Convergence? Some performance level?
Selecting an Action

• Simply choose action with highest (current) expected utility?

• Problem: each action has two effects
 - Yields a reward on current sequence
 - Gives information for learning future sequences

• Trade-off: immediate good for long-term well-being
 - Like trying a shortcut: might get lost, might find quicker path

• Exploration vs. exploitation again.

Exploration vs. Exploitation

• Problem with naïve reinforcement learning:
 - What action to take?
 - Best apparent action, based on learning to date } Exploitation
 - Greedy strategy
 - Often prematurely converges to a suboptimal policy!
 - Random (or unknown) action } Exploration
 - Will cover entire state space
 - Very expensive and slow to learn!
 - When to stop being random?
 - Balance exploration (try random actions) with exploitation (use best action so far)

More on Exploration

• Agent may sometimes choose to explore suboptimal moves in hopes of finding better outcomes
 - Only by visiting all states frequently enough can we guarantee learning the true values of all the states

• When the agent is learning, ideal would be to get accurate values for all states
 - Even though that may mean getting a negative outcome

• When agent is performing, ideal would be to get optimal outcome

• A learning agent should have an exploration policy

Exploration Policy

• Wacky approach (exploration): act randomly in hopes of eventually exploring entire environment
 - Choose any legal checkers move

• Greedy approach (exploitation): act to maximize utility using current estimate
 - Choose moves that have in the past led to wins

• Reasonable balance: act more wacky (exploratory) when agent has little idea of environment; more greedy when the model is close to correct

• Suppose you know no checkers strategy?
 - What's the best way to get better?

Example: N-Armed Bandits

• A row of slot machines

• Which to play and how often?

• State Space is a set of machines
 - Each has cost, payout, and percentage values

• Action is pull a lever.

• Each action has a positive or negative result
 - ...which then adjusts the utility of that action (pulling that lever)

• Exploration:
 - Try things until we have estimates for payouts

• Exploitation:
 - When we have some idea of the value of each action, choose the best.

N-Armed Bandits Example

• Each action initialized to a standard payout

• Result is either some cash (a win) or none (a lose)

• Exploration: Try things until we have estimates for payouts

• Exploitation: When we have some idea of the value of each action, choose the best.

• Clearly this is a heuristic:
 - After some # of successful trials, or with some statistical confidence, or when our value function isn’t changing (much), or...

• No proof we ever find the best lever to pull!
 - The more exploration we can do the better our model
 - But the higher the cost over multiple trials
RL Summary 1:

- **Reinforcement learning systems**
 - Learn series of actions or decisions, rather than a single decision
 - Based on feedback given at the end of the series
- A reinforcement learner has
 - A goal
 - Carries out trial-and-error search
 - Finds the best paths toward that goal

RL Summary 2:

- A typical reinforcement learning system is an active agent, interacting with its environment.
- It must balance:
 - Exploration: trying different actions and sequences of actions to discover which ones work best
 - Exploitation (achievement): using sequences which have worked well so far
- Must learn **successful sequences of actions** in an uncertain environment

RL Summary 3:

- Very hot area of research at the moment
- There are many more sophisticated RL algorithms
 - Most notably: probabilistic approaches
- Applicable to game-playing, search, finance, robot control, driving, scheduling, diagnosis, …
- Next time: Clustering, k-means and EM