
1

DECISION MAKING

UNDER UNCERTAINTY

CMSC 671, Fall 2017

1

material from Marie desJardin, Lise Getoor,
Jean-Claude Latombe, and Daphne Koller

SEQUENTIAL DECISION
MAKING UNDER
UNCERTAINTY

2

The Big Idea

• “Planning”: Find a sequence of steps to
accomplish a goal.
• Given start state, transition model, goal functions…

•  This is a kind of sequential decision making.
•  Transitions are deterministic.

•  What if they are stochastic (probabilistic)?
• One time in ten, you drop your sock

• Probabilistic Planning: Make a plan that accounts
for probability by carrying it through the plan.

3

Sequential Decision Making

• Finite Horizon
• Infinite Horizon

4

3

Simple Robot Navigation Problem

5

•  In each state, the possible actions are U, D, R, and L

Probabilistic Transition Model

6

•  In each state, the possible actions are U, D, R, and L
•  The effect of U is as follows (transition model):

•  With probability 0.8, the robot moves up one square (if the
 robot is already in the top row, then it does not move)

4

Probabilistic Transition Model

7

•  In each state, the possible actions are U, D, R, and L
•  The effect of U is as follows (transition model):

•  With probability 0.8, the robot moves up one square (if the
 robot is already in the top row, then it does not move)
•  With probability 0.1, the robot moves right one square (if the
 robot is already in the rightmost row, then it does not move)

Probabilistic Transition Model

8

•  In each state, the possible actions are U, D, R, and L
•  The effect of U is as follows (transition model):

•  With probability 0.8, the robot moves up one square (if the
 robot is already in the top row, then it does not move)
•  With probability 0.1, the robot moves right one square (if the
 robot is already in the rightmost row, then it does not move)
•  With probability 0.1, the robot moves left one square (if the
 robot is already in the leftmost row, then it does not move)

5

Probabilistic Transition Model

9

•  In each state, the possible actions are U, D, R, and L
•  The effect of U is as follows (transition model):

•  With probability 0.8, the robot moves up one square (if the
 robot is already in the top row, then it does not move)
•  With probability 0.1, the robot moves right one square (if the
 robot is already in the rightmost row, then it does not move)
•  With probability 0.1, the robot moves left one square (if the
 robot is already in the leftmost row, then it does not move)

• D, R, and L have similar probabilistic effects

Markov Property

10

The transition properties depend only
on the current state, not on the previous
history (how that state was reached)

Markov assumption generally: current state only ever
depends on previous state (or finite set of previous
states).

6

Sequence of Actions

11

K

•  Planned sequence of actions: (U, R)

J

2

3

1

4 3 2 1

y

x

[3,2]

obstacle à

ß goal
ß start state

Sequence of Actions

12

•  Planned sequence of actions: (U, R)
•  U is executed

2

3

1

4 3 2 1

[3,2]

[4,2] [3,3] [3,2]

y

x

7

Histories

13

•  Planned sequence of actions: (U, R)
•  U has been executed
•  R is executed

•  9 possible sequences of states – called histories
•  6 possible final states for the robot!

4 3 2 1

2

3

1

[3,2]

[4,2] [3,3] [3,2]

[3,3] [3,2] [4,1] [4,2] [4,3] [3,1]

y

x

Probability of Reaching the Goal

14

• P([4,3] | (U,R).[3,2]) =
 P([4,3] | R.[3,3]) x P([3,3] | U.[3,2])
 + P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])

2

3

1

4 3 2 1

Note importance of Markov property
in this derivation

• P([3,3] | U.[3,2]) = 0.8
• P([4,2] | U.[3,2]) = 0.1

• P([4,3] | R.[3,3]) = 0.8
• P([4,3] | R.[4,2]) = 0.1
 • P([4,3] | (U,R).[3,2]) = 0.65

8

Probability of Reaching the Goal

• Core idea: multiply backward probabilities of
each step taken from end state reached

• But we still need to consider different ways of
reaching a state
• Going all the way around the obstacle would be “worse”

15

2

3

1

4 3 2 1

Utility Function

16

•  [4,3] provides power supply
•  [4,2] is a sand area from which the robot cannot escape

-1

+1

2

3

1

4 3 2 1

9

Utility Function

17

•  [4,3] provides power supply
•  [4,2] is a sand area from which the robot cannot escape
•  The robot needs to recharge its batteries

-1

+1

2

3

1

4 3 2 1

Utility Function

18

•  [4,3] provides power supply
•  [4,2] is a sand area from which the robot cannot escape
•  The robot needs to recharge its batteries
•  [4,3] and [4,2] are terminal states

-1

+1

2

3

1

4 3 2 1

10

Utility Function

19

•  [4,3] provides power supply
•  [4,2] is a sand area from which the robot cannot escape
•  The robot needs to recharge its batteries
•  [4,3] and [4,2] are terminal states
•  Histories have utility!

-1

+1

2

3

1

4 3 2 1

Utility of a History

20

•  [4,3] provides power supply
•  [4,2] is a sand area from which the robot cannot escape
•  The robot needs to recharge its batteries
•  [4,3] or [4,2] are terminal states
•  Histories have utility!
•  The utility of a history is defined by the utility of the last
 state (+1 or –1) minus n/25, where n is the number of moves

• Many utility functions possible, for many kinds of problems.

-1

+1

2

3

1

4 3 2 1

11

Utility of an Action Sequence

21

-1

+1

2

3

1

4 3 2 1

•  Consider the action sequence (U,R) from [3,2]

Utility of an Action Sequence

22

-1

+1

2

3

1

4 3 2 1

[3,2]

[4,2] [3,3] [3,2]

[3,3] [3,2] [4,1] [4,2] [4,3] [3,1]

•  Consider the action sequence (U,R) from [3,2]
•  A run produces one of 7 possible histories, each with some probability

12

Utility of an Action Sequence

23

-1

+1

•  Consider the action sequence (U,R) from [3,2]
•  A run produces one of 7 possible histories, each with some probability
•  The utility of the sequence is the expected utility of the histories:

 U = ΣhUh P(h)

2

3

1

4 3 2 1

[3,2]

[4,2] [3,3] [3,2]

[3,3] [3,2] [4,1] [4,2] [4,3] [3,1]

Optimal Action Sequence

24

-1

+1

2

3

1

4 3 2 1

[3,2]

[4,2] [3,3] [3,2]

[3,3] [3,2] [4,1] [4,2] [4,3] [3,1]

•  Consider the action sequence (U,R) from [3,2]
•  A run produces one of 7 possible histories, each with some probability
•  The utility of the sequence is the expected utility of the histories:

 U = ΣhUh P(h)
•  The optimal sequence is the one with maximal utility

13

Optimal Action Sequence

25

-1

+1

•  Consider the action sequence (U,R) from [3,2]
•  A run produces one of 7 possible histories, each with some probability
•  The utility of the sequence is the expected utility of the histories
•  The optimal sequence is the one with maximal utility
•  But is the optimal action sequence what we want to
 compute?

2

3

1

4 3 2 1

[3,2]

[4,2] [3,3] [3,2]

[3,3] [3,2] [4,1] [4,2] [4,3] [3,1]

only if the sequence is executed blindly!

Accessible or
observable state Repeat:

w  s ß sensed state
w  If s is a terminal state then exit
w  a ß choose action (given s)
w  Perform a

Reactive Agent Algorithm

26

14

Policy (Reactive/Closed-Loop Strategy)

27

•  In every state, we need to know what to do
•  The goal doesn’t change
•  A policy (Π) is a complete mapping from
 states to actions

• “If in [3,2], go up; if in [3,1], go left; if in…”

-1

+1

2

3

1

4 3 2 1

Repeat:
w  s ß sensed state
w  If s is terminal then exit
w  a ß Π(s)
w  Perform a

Reactive Agent Algorithm

28

15

Optimal Policy

29

-1

+1

•  A policy Π is a complete mapping from states to actions
•  The optimal policy Π* is the one that always yields a
 history (sequence of steps ending at a terminal state)
 with maximal expected utility

2

3

1

4 3 2 1

Makes sense because of Markov property

Note that [3,2] is a “dangerous”
state that the optimal policy

tries to avoid

Optimal Policy

30

-1

+1

•  A policy Π is a complete mapping from states to actions
•  The optimal policy Π* is the one that always yields a
 history with maximal expected utility

2

3

1

4 3 2 1

This problem is called a
Markov Decision Problem (MDP)

How to compute Π*?

16

Additive Utility

•  History H = (s0,s1,…,sn)
•  The utility of H is additive iff:
 U(s0,s1,…,sn) = R(0) + U(s1,…,sn) = Σ R(i)

31

Reward
•  The reward accumulates
as you step through
states.

Additive Utility

•  History H = (s0,s1,…,sn)
•  The utility of H is additive iff:
 U(s0,s1,…,sn) = R(0) + U(s1,…,sn) = Σ R(i)

•  Robot navigation example:

• R(n) = +1 if sn = [4,3]

• R(n) = -1 if sn = [4,2]
• R(i) = -1/25 if i = 0, …, n-1

32

17

Principle of Max Expected Utility
•  History H = (s0,s1,…,sn)

•  Utility of H: U(s0,s1,…,sn) = Σ R(i)

First-step analysis à

•  U(i) = R(i) + maxa ΣkP(k | a.i) U(k)

•  Π*(i) = arg maxa ΣkP(k | a.i) U(k)

33

-1

+1

reminder! utility
of a sequence:
U = ΣhUh P(h)

Defining State Utility

• Problem:
• When making a decision, we only know the reward so
far, and the possible actions

• We’ve defined utility retroactively (i.e., the utility of a
history is known once we finish it)

• What is the utility of a particular state in the middle of
decision making?

• Need to compute expected utility of possible future
histories

34

18

Value Iteration
•  Initialize the utility of each non-terminal state
 si to U0(i) = 0 } or some uniform or uniformly distributed value

•  For t = 0, 1, 2, …, do:

 Ut+1(i) ß R(i) + maxa ΣkP(k | a.i) Ut(k)

35

-1

+1

2

3

1

4 3 2 1

Value Iteration
•  Initialize the utility of each non-terminal state
 si to U0(i) = 0

•  For t = 0, 1, 2, …, do:

 Ut+1(i) ß R(i) + maxa ΣkP(k | a.i) Ut(k)

36

-1

+1

2

3

1

4 3 2 1

0.705 0.655 0.388 0.611

0.762

0.812 0.868 ???

0.660

Note the importance
of terminal states and
connectivity of the
state-transition graph

EXERCISE: What is U*([3,3]) (assuming that the other U* are as shown)?

19

Value Iteration
•  Initialize the utility of each non-terminal state
 si to U0(i) = 0

•  For t = 0, 1, 2, …, do:

 Ut+1(i) ß R(i) + maxa ΣkP(k | a.i) Ut(k)

37

-1

+1

2

3

1

4 3 2 1

0.705 0.655 0.388 0.611

0.762

0.812 0.868 .918

0.660

U*3,3 =
 R3,3 +
 [P3,2 U*3,2 + P3,3 U*3,3 + P4,3 U*4,3]

Policy Iteration
•  Pick a policy Π at random

40

20

Policy Iteration
•  Pick a policy Π at random
•  Repeat:

•  Compute the utility of each state for Π

 Ut+1(i) ß R(i) + ΣkP(k | Π(i).i) Ut(k)

41

Policy Iteration
•  Pick a policy Π at random
•  Repeat:

•  Compute the utility of each state for Π

 Ut+1(i) ß R(i) + ΣkP(k | Π(i).i) Ut(k)

•  Compute the policy Π’ given these utilities

 Π’(i) = arg maxa ΣkP(k | a.i) U(k)

42

21

Policy Iteration
•  Pick a policy Π at random
•  Repeat:

•  Compute the utility of each state for Π

 Ut+1(i) ß R(i) + ΣkP(k | Π(i).i) Ut(k)

•  Compute the policy Π’ given these utilities

 Π’(i) = arg maxa ΣkP(k | a.i) U(k)

•  If Π’ = Π then return Π

43

Or solve the set of linear equations:

U(i) = R(i) + ΣkP(k | Π(i).i) U(k)
(often a sparse system)

Infinite Horizon

44

-1

+1

2

3

1

4 3 2 1

In many problems, e.g., the robot
navigation example, histories are
potentially unbounded and the same
state can be reached many times

One trick:
Use discounting to make an infinite
horizon problem mathematically
tractable

What if the robot lives forever?

22

Value Iteration: Summary
•  Value iteration:

•  Initialize state values (expected utilities) randomly
•  Repeatedly update state values using best action, according to current

approximation of state values
•  Terminate when state values stabilize
•  Resulting policy will be the best policy because it’s based on accurate state value

estimation

45

Policy Iteration: Summary
•  Policy iteration:

•  Initialize policy randomly
•  Repeatedly update state values using best action, according to current

approximation of state values
•  Then update policy based on new state values
•  Terminate when policy stabilizes
•  Resulting policy is the best policy, but state values may not be accurate (may not

have converged yet)
•  Policy iteration is often faster (because we don’t have to get the state values right)

•  Both methods have a major weakness: They require us to
know the transition function exactly in advance!

46

