DECISION MAKING UNDER UNCERTAINTY

CMSC 671, Fall 2017
material from Marie desJardin, Lise Getoor, Jean-Claude Latombe, and Daphne Koller

SEQUENTIAL DECISION MAKING UNDER UNCERTAINTY

The Big Idea

- "Planning": Find a sequence of steps to accomplish a goal.
- Given start state, transition model, goal functions...
- This is a kind of sequential decision making.
- Transitions are deterministic.
- What if they are stochastic (probabilistic)? - One time in ten, you drop your sock
- Probabilistic Planning: Make a plan that accounts for probability by carrying it through the plan.

Sequential Decision Making

- Finite Horizon
- Infinite Horizon

Simple Robot Navigation Problem

- In each state, the possible actions are $\mathrm{U}, \mathrm{D}, \mathrm{R}$, and L

Probabilistic Transition Model

- In each state, the possible actions are $\mathrm{U}, \mathrm{D}, \mathrm{R}$, and L
- The effect of U is as follows (transition model):
- With probability 0.8 , the robot moves up one square (if the robot is already in the top row, then it does not move)

Probabilistic Transition Model

- In each state, the possible actions are $\mathrm{U}, \mathrm{D}, \mathrm{R}$, and L
- The effect of U is as follows (transition model):
- With probability 0.8 , the robot moves up one square (if the robot is already in the top row, then it does not move)
- With probability 0.1 , the robot moves right one square (if the robot is already in the rightmost row, then it does not move)

Probabilistic Transition Model

- In each state, the possible actions are $\mathrm{U}, \mathrm{D}, \mathrm{R}$, and L
- The effect of U is as follows (transition model):
- With probability 0.8 , the robot moves up one square (if the robot is already in the top row, then it does not move)
- With probability 0.1 , the robot moves right one square (if the robot is already in the rightmost row, then it does not move)
- With probability 0.1 , the robot moves left one square (if the robot is already in the leftmost row, then it does not move)

Probabilistic Transition Model

- In each state, the possible actions are $\mathrm{U}, \mathrm{D}, \mathrm{R}$, and L
- The effect of U is as follows (transition model):
- With probability 0.8 , the robot moves up one square (if the robot is already in the top row, then it does not move)
- With probability 0.1 , the robot moves right one square (if the robot is already in the rightmost row, then it does not move)
- With probability 0.1 , the robot moves left one square (if the robot is already in the leftmost row, then it does not move)
$\cdot D, R$, and L have similar probabilistic effects

Markov Property

The transition properties depend only on the current state, not on the previous history (how that state was reached)

Markov assumption generally: current state only ever depends on previous state (or finite set of previous states).

Sequence of Actions

Sequence of Actions

- Planned sequence of actions: (U, R)
- U is executed

Histories

- Planned sequence of actions: (U, R)
- U has been executed
- R is executed
- 9 possible sequences of states - called histories
- 6 possible final states for the robot!

Probability of Reaching the Goal

-P([4,3] | (U,R).[3,2]) =

$$
\mathbf{P}([4,3] \mid \operatorname{R} \cdot[3,3]) \times \mathbf{P}([3,3] \mid \mathrm{U}[3,2])
$$

$$
+\mathbf{P}([4,3] \mid \text { R. }[4,2]) \times \mathbf{P}([4,2] \mid \cup[3,2])
$$

$\cdot \mathbf{P}([4,3] \mid$ R. $[3,3])=0.8 \quad \operatorname{PP}([3,3] \mid$ U. $[3,2])=0.8$
$\bullet \mathbf{P}([4,3] \mid$ R. $[4,2])=0.1 \quad \bullet \mathbf{P}([4,2] \mid \mathrm{U} .[3,2])=0.1$
-P([4,3] | (U,R).[3,2]) $=0.65$

Probability of Reaching the Goal

- Core idea: multiply backward probabilities of each step taken from end state reached
- But we still need to consider different ways of reaching a state
- Going all the way around the obstacle would be "worse"

Utility Function

- $[4,3]$ provides power supply
- $[4,2]$ is a sand area from which the robot cannot escape

Utility Function

- [4,3] provides power supply
- $[4,2]$ is a sand area from which the robot cannot escape
- The robot needs to recharge its batteries

Utility Function

- $[4,3]$ provides power supply
- [4,2] is a sand area from which the robot cannot escape
- The robot needs to recharge its batteries
- $[4,3]$ and $[4,2]$ are terminal states

Utility Function

- $[4,3]$ provides power supply
- $[4,2]$ is a sand area from which the robot cannot escape
- The robot needs to recharge its batteries
- $[4,3]$ and $[4,2]$ are terminal states
- Histories have utility!

Utility of a History

- $[4,3]$ provides power supply
- [4,2] is a sand area from which the robot cannot escape
- The robot needs to recharge its batteries
- $[4,3]$ or $[4,2]$ are terminal states
- Histories have utility!
- The utility of a history is defined by the utility of the last state (+1 or -1) minus $\mathrm{n} / 25$, where n is the number of moves - Many utility functions possible, for many kinds of problems.

Utility of an Action Sequence

- Consider the action sequence (U, R) from $[3,2]$

Utility of an Action Sequence

- Consider the action sequence (U, R) from $[3,2]$
- A run produces one of 7 possible histories, each with some probability

Utility of an Action Sequence

- Consider the action sequence (U, R) from $[3,2]$
- A run produces one of 7 possible histories, each with some probability
- The utility of the sequence is the expected utility of the histories:

$$
\mathbf{U}=\Sigma_{\mathrm{h}} \mathbf{U}_{\mathrm{h}} \mathbf{P}(\mathrm{~h})
$$

Optimal Action Sequence

- Consider the action sequence (U, R) from $[3,2]$
- A run produces one of 7 possible histories, each with some probability
- The utility of the sequence is the expected utility of the histories:

$$
\mathbf{U}=\Sigma_{\mathrm{h}} \mathbf{U}_{\mathrm{h}} \mathbf{P}(\mathrm{~h})
$$

- The optimal sequence is the one with maximal utility

Optimal Action Sequence

- Consider the action sequence (U, R) from $[3,2]$
- A run produc only if the sequence is executed blindly! bability

- The optimal sequence is the one with maximal utility
- But is the optimalaction sequence what we want to compute?

Reactive Agent Algorithm

Repeat:
Accessible or observable state

- $\mathrm{s} \leqslant$ sensed state
- If s is a terminal state then exit
- a \leftarrow choose action (given s)
- Perform a

Policy (Reactive/Closed-Loop Strategy)

- In every state, we need to know what to do
- The goal doesn't change
- A policy (Π) is a complete mapping from states to actions
- "If in [3,2], go up; if in [3,1], go left; if in..."

Reactive Agent Algorithm

Repeat:

- $\mathrm{s} \leftarrow$ sensed state
- If s is terminal then exit
- $a<\Pi(s)$
- Perform a

Optimal Policy

- A policy Π is a complet Note that $[3,2]$ is a "dangerous"
- The optimal policy Π^{*} i state that the optimal policy history (sequence of st tries to avoid with maximal expected utilit,

Makes sense because of Markov property

Optimal Policy

- A policy Π is a comp This problem is called a

This problem is called a hs

- The optimal policy Γ Markov Decision Problem (MDP) history with maximal expected utility

How to compute Π^{*} ?

Additive Utility

- History $\mathrm{H}=\left(\mathrm{S}_{0}, \mathrm{~S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}\right)$
- The utility of H is additive iff:

$$
\mathbf{U}\left(\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots, \mathrm{~s}_{n}\right)=\mathbf{R}(0)+\mathbf{U}\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{n}\right)=\Sigma \mathbf{R}(\mathrm{i})
$$

- The reward accumulates as you step through states.

Additive Utility

- History $\mathrm{H}=\left(\mathrm{S}_{0}, \mathrm{~S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}\right)$
- The utility of H is additive iff:

$$
\mathbf{U}\left(\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots, \mathrm{~s}_{n}\right)=\mathbf{R}(0)+\mathbf{U}\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{n}\right)=\Sigma \mathbf{R}(\mathrm{i})
$$

- Robot navigation example:
- $\mathbf{R}_{(\mathrm{n})}=+1$ if $\mathrm{S}_{\mathrm{n}}=[4,3]$
- $\mathbf{R}_{(\mathrm{n})}=-1$ if $\mathrm{S}_{\mathrm{n}}=[4,2]$
- $\mathbf{R}(\mathrm{i})=-1 / 25$ if $\mathrm{i}=0, \ldots, n-1$

Principle of Max Expected Utility

- History $\mathrm{H}=\left(\mathrm{S}_{0}, \mathrm{~S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}\right)$
- Utility of $\mathrm{H}: ~ \mathrm{U}_{\left(\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}\right)}=\Sigma \mathrm{R}(\mathrm{i})$

First-step analysis
reminder! utility
of a sequence:
$\mathbf{U}=\Sigma_{\mathrm{h}} \mathbf{U}_{\mathrm{h}} \mathbf{P}(\mathrm{h})$

- $\mathbf{U}(\mathrm{i})=\mathbf{R}(\mathrm{i})+\max _{\mathrm{a}} \Sigma_{\mathrm{k}} \mathbf{P}(\mathrm{k} \mid \mathrm{a} . \mathrm{i}) \mathbf{U}(\mathrm{k})$
- $\Pi^{*}(\mathrm{i})=\arg \max _{\mathrm{a}} \sum_{\mathrm{k}} \mathbf{P}(\mathrm{k} \mid \mathrm{a} . \mathrm{i}) \mathbf{U}(\mathrm{k})$

Defining State Utility

- Problem:
- When making a decision, we only know the reward so far, and the possible actions
- We've defined utility retroactively (i.e., the utility of a history is known once we finish it)
- What is the utility of a particular state in the middle of decision making?
- Need to compute expected utility of possible future histories

Value Iteration

- Initialize the utility of each non-terminal state

$$
\left.\mathrm{s}_{\mathrm{i}} \text { to } \mathbf{U}_{\mathbf{0}}(\mathrm{i})=0 \quad\right\} \text { or some uniform or uniformly distributed value }
$$

- For $t=0,1,2, \ldots$, do:
$\mathbf{U}_{\mathbf{t}+\mathbf{1}}(\mathrm{i}) \leftarrow \mathbf{R}(\mathrm{i})+\max _{\mathrm{a}} \sum_{\mathrm{k}} \mathbf{P}\left(\mathrm{k} \mid\right.$ a.i) $\mathbf{U}_{\mathbf{t}}(\mathrm{k})$

Value Iteration

- Initialize the utility of each no s_{i} to $\mathrm{U}_{\mathbf{0}}(\mathrm{i})=0$
- For $t=0,1,2, \ldots$, do:
$\mathbf{U}_{\mathrm{t}+1}(\mathrm{i}) \leftarrow \mathbf{R}(\mathrm{i})+\max _{\mathrm{a}} \sum_{\mathrm{k}} \mathbf{P}\left(\mathrm{k} \mid\right.$ a.i) $\mathbf{U}_{\mathrm{t}}(\mathrm{k})$

EXERCISE: What is $U^{*}([3,3])$ (assuming that the other U^{*} are as shown)?

Value Iteration

- Initialize the utility of each non-terminal state

$$
s_{i} \text { to } U_{0}(i)=0
$$

- For $t=0,1,2, \ldots$, do:
$\mathbf{U}_{\mathbf{t}+1}(\mathrm{i}) \leftarrow \mathbf{R}(\mathrm{i})+\max _{\mathrm{a}} \sum_{\mathrm{k}} \mathbf{P}\left(\mathrm{k} \mid\right.$ a.i) $\mathbf{U}_{\mathbf{t}}(\mathrm{k})$

Policy Iteration

- Pick a policy Π at random

Policy Iteration

- Pick a policy Π at random
- Repeat:
- Compute the utility of each state for Π

$$
\mathbf{U}_{\mathbf{t}+1}(\mathrm{i}) \leftarrow \mathbf{R}(\mathrm{i})+\sum_{k} \mathbf{P}(\mathrm{k} \mid \Pi(\mathrm{i}) . \mathrm{i}) \mathbf{U}_{\mathbf{t}}(\mathrm{k})
$$

Policy Iteration

- Pick a policy Π at random
- Repeat:
- Compute the utility of each state for Π
$\mathbf{U}_{\mathbf{t}+1}(\mathrm{i})<\mathbf{R}_{(\mathrm{i})}+\sum_{\mathrm{k}} \mathbf{P}(\mathrm{k} \mid \Pi(\mathrm{i}) . \mathrm{i}) \mathrm{U}_{\mathbf{t}}(\mathrm{k})$
- Compute the policy Π^{\prime} given these utilities
$\Pi^{\prime}(\mathrm{i})=\arg \max _{\mathrm{a}} \sum_{\mathrm{k}} \mathbf{P}(\mathrm{k} \mid$ a.i) $\mathbf{U}(\mathrm{k})$

Policy Iteration

- Pick a policy Π at random
- Repeat:
- Compute the utility of each state for Π
$\mathbf{U}_{\mathbf{t}+1}(\mathrm{i}) \leqslant \mathbf{R}_{(\mathrm{i})}+\sum_{\mathrm{k}} \mathbf{P}(\mathrm{k} \mid \Pi(\mathrm{i}) \cdot \mathrm{i}) \mathbf{U}_{\mathbf{t}}(\mathrm{k})$
- Compute the policy Π ' given these utilities

$\Pi^{\prime}(\mathrm{i})=\arg \max _{\mathrm{a}} \Sigma_{\mathrm{k}} \mathbf{P}\left(\mathrm{k} \mid \mathrm{L}_{\mathrm{i}} \mathrm{i}\right) \mathbf{U (k)}$
- If $\Pi^{\prime}=\Pi$ then return Π
Or solve the set of linear equations: $\mathbf{U}(\mathrm{i})=\mathbf{R}(\mathrm{i})+\sum_{\mathbf{k}} \mathbf{P}(\mathrm{k} \mid \Pi(\mathrm{i}) . \mathrm{i})$ (often a sparse system)
(k)

Infinite Horizon

In many problems, e.g., the robot navigation example, histories are potentially unbounded and the same state can be reached many times

Value Iteration: Summary

- Value iteration:

- Initialize state values (expected utilities) randomly
- Repeatedly update state values using best action, according to current approximation of state values
- Terminate when state values stabilize
- Resulting policy will be the best policy because it's based on accurate state value estimation

Policy Iteration: Summary

- Policy iteration:
- Initialize policy randomly
- Repeatedly update state values using best action, according to current approximation of state values
- Then update policy based on new state values
- Terminate when policy stabilizes
- Resulting policy is the best policy, but state values may not be accurate (may not have converged yet)
- Policy iteration is often faster (because we don't have to get the state values right)
- Both methods have a major weakness: They require us to
know the transition function exactly in advance!

