DECISION MAKING UNDER UNCERTAINTY

CMSC 671, Fall 2017

material from Marie desJardin, Lise Getoor, Jean-Claude Latombe, and Daphne Koller

1

SEQUENTIAL DECISION MAKING UNDER UNCERTAINTY

Policy Iteration

- Pick a policy Π at random
- Repeat:
 - \cdot Compute the utility of each state for Π

41

 $\boldsymbol{U_{t+1}(i) \leftarrow \boldsymbol{R}(i) + \boldsymbol{\Sigma_k P}(k \mid \boldsymbol{\Pi}(i).i) \; \boldsymbol{U_t}(k)}$

Value Iteration: Summary

Value iteration:

- · Initialize state values (expected utilities) randomly
- Repeatedly update state values using best action, according to current approximation of state values
- Terminate when state values stabilize
- Resulting policy will be the best policy because it's based on accurate state value estimation

