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The Big Idea 

• “Planning”: Find a sequence of steps to 
accomplish a goal. 
• Given start state, transition model, goal functions… 

•   This is a kind of sequential decision making. 
•  Transitions are deterministic. 

•   What if they are stochastic (probabilistic)? 
• One time in ten, you drop your sock 

• Probabilistic Planning: Make a plan that accounts 
for probability by carrying it through the plan. 
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Sequential Decision Making 

• Finite Horizon 
• Infinite Horizon 
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Simple Robot Navigation Problem 
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•  In each state, the possible actions are U, D, R, and L 

Probabilistic Transition Model 
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•  In each state, the possible actions are U, D, R, and L 
•  The effect of U is as follows (transition model): 

•  With probability 0.8, the robot moves up one square (if the  
   robot is already in the top row, then it does not move) 
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Probabilistic Transition Model 
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•  In each state, the possible actions are U, D, R, and L 
•  The effect of U is as follows (transition model): 

•  With probability 0.8, the robot moves up one square (if the  
   robot is already in the top row, then it does not move) 
•  With probability 0.1, the robot moves right one square (if the 
   robot is already in the rightmost row, then it does not move) 

Probabilistic Transition Model 
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•  In each state, the possible actions are U, D, R, and L 
•  The effect of U is as follows (transition model): 

•  With probability 0.8, the robot moves up one square (if the  
   robot is already in the top row, then it does not move) 
•  With probability 0.1, the robot moves right one square (if the 
   robot is already in the rightmost row, then it does not move) 
•  With probability 0.1, the robot moves left one square (if the 
   robot is already in the leftmost row, then it does not move) 
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Probabilistic Transition Model 
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•  In each state, the possible actions are U, D, R, and L 
•  The effect of U is as follows (transition model): 

•  With probability 0.8, the robot moves up one square (if the  
   robot is already in the top row, then it does not move) 
•  With probability 0.1, the robot moves right one square (if the 
   robot is already in the rightmost row, then it does not move) 
•  With probability 0.1, the robot moves left one square (if the 
   robot is already in the leftmost row, then it does not move) 

• D, R, and L have similar probabilistic effects 

Markov Property 
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The transition properties depend only  
on the current state, not on the previous  
history (how that state was reached)  
 
Markov assumption generally: current state only ever 
depends on previous state (or finite set of previous 
states). 
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Sequence of Actions 
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•  Planned sequence of actions:  (U, R) 
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Sequence of Actions 
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•  Planned sequence of actions:  (U, R) 
•  U is executed 
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Histories 
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•  Planned sequence of actions:  (U, R) 
•  U has been executed 
•  R is executed 
 
•  9 possible sequences of states – called histories  
•  6 possible final states for the robot! 
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Probability of Reaching the Goal 
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• P([4,3] | (U,R).[3,2]) =  
                           P([4,3] | R.[3,3]) x P([3,3] | U.[3,2])  
                      + P([4,3] | R.[4,2]) x P([4,2] | U.[3,2]) 
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Note importance of Markov property  
in this derivation 

• P([3,3] | U.[3,2]) = 0.8 
• P([4,2] | U.[3,2]) = 0.1 

• P([4,3] | R.[3,3]) = 0.8 
• P([4,3] | R.[4,2]) = 0.1 
 • P([4,3] | (U,R).[3,2]) = 0.65 
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Probability of Reaching the Goal 

• Core idea: multiply backward probabilities of 
each step taken from end state reached 

• But we still need to consider different ways of 
reaching a state 
• Going all the way around the obstacle would be “worse” 
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Utility Function 
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•  [4,3] provides power supply 
•  [4,2] is a sand area from which the robot cannot escape 
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Utility Function 

17 

•  [4,3] provides power supply 
•  [4,2] is a sand area from which the robot cannot escape 
•  The robot needs to recharge its batteries 
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Utility Function 
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•  [4,3] provides power supply 
•  [4,2] is a sand area from which the robot cannot escape 
•  The robot needs to recharge its batteries 
•  [4,3] and [4,2] are terminal states 
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Utility Function 

19 

•  [4,3] provides power supply 
•  [4,2] is a sand area from which the robot cannot escape 
•  The robot needs to recharge its batteries 
•  [4,3] and [4,2] are terminal states 
•  Histories have utility! 
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Utility of a History 
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•  [4,3] provides power supply 
•  [4,2] is a sand area from which the robot cannot escape 
•  The robot needs to recharge its batteries 
•  [4,3] or [4,2] are terminal states  
•  Histories have utility! 
•  The utility of a history is defined by the utility of the last  
   state (+1 or –1) minus n/25, where n is the number of moves 

• Many utility functions possible, for many kinds of problems. 
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Utility of an Action Sequence 

21 

-1 

+1 

2 

3 

1 

4 3 2 1 

•  Consider the action sequence (U,R) from [3,2] 

Utility of an Action Sequence 
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•  Consider the action sequence (U,R) from [3,2] 
•  A run produces one of 7 possible histories, each with some probability 
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Utility of an Action Sequence 
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•  Consider the action sequence (U,R) from [3,2] 
•  A run produces one of 7 possible histories, each with some probability 
•  The utility of the sequence is the expected utility of the histories: 

                                    U = ΣhUh P(h) 
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Optimal Action Sequence 
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[3,2] 

[4,2] [3,3] [3,2] 
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•  Consider the action sequence (U,R) from [3,2] 
•  A run produces one of 7 possible histories, each with some probability 
•  The utility of the sequence is the expected utility of the histories: 

                                    U = ΣhUh P(h) 
•  The optimal sequence is the one with maximal utility 
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Optimal Action Sequence 
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•  Consider the action sequence (U,R) from [3,2] 
•  A run produces one of 7 possible histories, each with some probability 
•  The utility of the sequence is the expected utility of the histories 
•  The optimal sequence is the one with maximal utility 
•  But is the optimal action sequence what we want to  
  compute? 
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only if the sequence is executed blindly!  

Accessible or 
observable state Repeat: 

w  s ß sensed state 
w  If s is a terminal state then exit 
w  a ß choose action (given s) 
w  Perform a 
 

Reactive Agent Algorithm 
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Policy (Reactive/Closed-Loop Strategy) 
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•  In every state, we need to know what to do 
•  The goal doesn’t change  
•  A policy (Π) is a complete mapping from  
  states to actions 

• “If in [3,2], go up; if in [3,1], go left; if in…” 
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Repeat: 
w  s ß sensed state 
w  If s is terminal then exit 
w  a ß Π(s) 
w  Perform a 
 

Reactive Agent Algorithm 

28 
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Optimal Policy 
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•  A policy Π is a complete mapping from states to actions 
•  The optimal policy Π* is the one that always yields a  
   history (sequence of steps ending at a terminal state)  
   with maximal expected utility 
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Makes sense because of Markov property  

Note that [3,2] is a “dangerous”  
state that the optimal policy  

tries to avoid 

Optimal Policy 
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•  A policy Π is a complete mapping from states to actions 
•  The optimal policy Π* is the one that always yields a  
   history with maximal expected utility 
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This problem is called a 
Markov Decision Problem (MDP) 

How to compute Π*? 
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Additive Utility 

•   History H = (s0,s1,…,sn) 
•   The utility of H is additive iff:  
    U(s0,s1,…,sn) = R(0) + U(s1,…,sn) = Σ R(i)  

31 

Reward 
•  The reward accumulates 
as you step through 
states. 

Additive Utility 

•   History H = (s0,s1,…,sn) 
•   The utility of H is additive iff:  
    U(s0,s1,…,sn) = R(0) + U(s1,…,sn) = Σ R(i)  

•   Robot navigation example: 

• R(n) = +1 if sn = [4,3] 

• R(n) = -1 if sn = [4,2]  
• R(i) = -1/25 if i = 0, …, n-1  
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Principle of Max Expected Utility 
•   History H = (s0,s1,…,sn) 

•   Utility of H: U(s0,s1,…,sn) = Σ R(i) 

 

First-step analysis à 

•   U(i) = R(i) + maxa ΣkP(k | a.i) U(k) 

•   Π*(i) = arg maxa ΣkP(k | a.i) U(k) 
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reminder! utility 
of a sequence: 
U = ΣhUh P(h) 

Defining State Utility 

• Problem:   
• When making a decision, we only know the reward so 
far, and the possible actions 

• We’ve defined utility retroactively (i.e., the utility of a 
history is known once we finish it) 

• What is the utility of a particular state in the middle of 
decision making? 

• Need to compute expected utility of possible future 
histories 
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Value Iteration 
•   Initialize the utility of each non-terminal state  
      si to U0(i) = 0     } or some uniform or uniformly distributed value 

•   For t = 0, 1, 2, …, do: 

     Ut+1(i) ß R(i) + maxa ΣkP(k | a.i) Ut(k) 
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Value Iteration 
•   Initialize the utility of each non-terminal state  
      si to U0(i) = 0 

•   For t = 0, 1, 2, …, do: 

     Ut+1(i) ß R(i) + maxa ΣkP(k | a.i) Ut(k) 

36 
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0.705 0.655 0.388 0.611 

0.762 

0.812 0.868 ??? 

0.660 

Note the importance 
of terminal states and 
connectivity of the 
state-transition graph 

EXERCISE:  What is U*([3,3]) (assuming that the other U* are as shown)? 
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Value Iteration 
•   Initialize the utility of each non-terminal state  
      si to U0(i) = 0  

•   For t = 0, 1, 2, …, do: 

     Ut+1(i) ß R(i) + maxa ΣkP(k | a.i) Ut(k) 
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0.705 0.655 0.388 0.611 

0.762 

0.812 0.868 .918 

0.660 

U*3,3 =  
    R3,3 +  
    [P3,2 U*3,2 + P3,3 U*3,3 + P4,3 U*4,3] 

Policy Iteration 
•   Pick a policy Π at random 
 

40 
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Policy Iteration 
•   Pick a policy Π at random 
•   Repeat: 

•  Compute the utility of each state for Π 

 Ut+1(i) ß R(i) + ΣkP(k | Π(i).i) Ut(k) 
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Policy Iteration 
•   Pick a policy Π at random 
•   Repeat: 

•  Compute the utility of each state for Π 

 Ut+1(i) ß R(i) + ΣkP(k | Π(i).i) Ut(k)  

•  Compute the policy Π’ given these utilities 

 Π’(i) = arg maxa ΣkP(k | a.i) U(k) 

42 
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Policy Iteration 
•   Pick a policy Π at random 
•   Repeat: 

•  Compute the utility of each state for Π 

 Ut+1(i) ß R(i) + ΣkP(k | Π(i).i) Ut(k)  

•  Compute the policy Π’ given these utilities 

 Π’(i) = arg maxa ΣkP(k | a.i) U(k) 

•  If Π’ = Π then return Π
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Or solve the set of linear equations: 

U(i) = R(i) + ΣkP(k | Π(i).i) U(k) 
(often a sparse system) 

Infinite Horizon 
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In many problems, e.g., the robot  
navigation example, histories are  
potentially unbounded and the same  
state can be reached many times 

One trick: 
Use discounting to make an infinite 
horizon problem mathematically 
tractable 

What if the robot lives forever? 
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Value Iteration: Summary 
•   Value iteration:  

•  Initialize state values (expected utilities) randomly 
•  Repeatedly update state values using best action, according to current 

approximation of state values 
•  Terminate when state values stabilize 
•  Resulting policy will be the best policy because it’s based on accurate state value 

estimation 
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Policy Iteration: Summary 
•  Policy iteration: 

•  Initialize policy randomly 
•  Repeatedly update state values using best action, according to current 

approximation of state values 
•  Then update policy based on new state values 
•  Terminate when policy stabilizes 
•  Resulting policy is the best policy, but state values may not be accurate (may not 

have converged yet) 
•  Policy iteration is often faster (because we don’t have to get the state values right) 

•  Both methods have a major weakness:  They require us to 
know the transition function exactly in advance! 
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