
1 

Bayesian Learning 
(Ch. 20.1–20.2) 

Knowledge-Based Agents 
(Ch. 7) 

Cynthia Matuszek – CMSC 671 Material from Dr. Marie desJardin,  1 

Data D 

 
Inducer 

 

C 

A 

E B 

 
 
 
 

E[1] B[1] A[1] C[1]
⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅

E[M ] B[M ] A[M ] C[M ]

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Quick Bookkeeping 

•  Today:  
•  Tail end of  machine learning (for now) 

•  Knowledge-based agents and knowledge representation 

•  Next time:  
•  Propositional logic 

•  Logical inference 

•  After that: planning, planning, more planning 
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Bayesian Learning 

•  Bayesian probability: the view of  probability as a 
measure of  belief, as opposed to being a frequency. 
•  Does not mean that past statistics are ignored 

•  Statistics of  what has happened in the past is the knowledge that 
is conditioned on and used to update belief. 

•  Models are mathematical formulations of  observed 
events 

•  Parameters are factors in the models affecting 
observations 

Mackworth & Poole Ch. 6 
www.analyticsvidhya.com/blog/2016/06/bayesian-statistics-beginners-simple-english 

Naïve Bayes 

•  Make the simplest possible independence assumption: Each 
attribute is independent of  the values of  the other attributes, 
given the class variable 
•  In restaurants:  Cuisine is independent of  Patrons, given a decision to 

stay 

•  Embodied in a belief  network where: 
•  The features are the nodes 
•  Target variable (the classification) has no parents 
•  The classification is the only parent of  each input feature 

•  This requires: 
•  Probability distributions P(C) for target variable C 
•  P(Fi|C) for each input feature Fi 
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Bayesian Formulation 

•  For each example, predict C by conditioning on observed 
input features and by querying the classification 

•  The probability of  class C given F1, ..., Fn 
 p(C | F1, ..., Fn) = p(C) p(F1, ..., Fn | C) / P(F1, ..., Fn)

•  Denominator: normalizing constant to make probabilities 
sum to 1, which we call α

 p(C | F1, ..., Fn) = α p(C) p(F1, ..., Fn | C)

•  Denominator does not depend on class 

•  Therefore, not needed to determine the most likely class  
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Bayesian Formulation 

•  The probability of  class C given F1, ..., Fn 
 p(C | F1, ..., Fn) = p(C) p(F1, ..., Fn | C) / P(F1, ..., Fn)�

     = α p(C) p(F1, ..., Fn | C)

•  Assumption: each feature is conditionally independent 
of  the other features given C.  Then: 

 p(C | F1, ..., Fn)  = α p(C) Πi p(Fi | C) 

•  We can estimate each of  these conditional probabilities 
from the observed counts in the training data: 

 p(Fi | C)  = N(Fi ∧ C) / N(C)
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Bayesian Formulation 

•  Example: 

•  Given a data point with inputs F1=v1,...,Fk=vk: 

•  Use Bayes’ rule to compute posterior probability 
distribution of  the example’s classification, C:  

•  P(C | F1=v1,...,Fk=vk)      (P(F1=v1,...,Fk=vk| C) ×P(C)) 
      (P(F1=v1,...,Fk=vk))  
           (P(F1=v1|C)×···×P(Fk=vk| C)×P(C)) 
        ( ∑CP(F1=v1|C)×···×P(Fk=vk| C) ×P(C))  
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Naive Bayes: Example 

•  p(Wait | Cuisine, Patrons, Rainy?) �
 = α p(Cuisine ∧ Patrons ∧ Rainy? | Wait)�

= α p(Wait) p(Cuisine | Wait) p(Patrons | Wait) �
 p(Rainy? | Wait)

 naive Bayes assumption:  is it reasonable? 
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Naive Bayes: Analysis 

•  Easy to implement 

•  Outperforms many more complex algorithms 
•  Should almost always be used for baseline comparisons 

•  Works well when the independence assumption is appropriate 
•  Often appropriate for natural kinds: classes that exist because they are 

useful in distinguishing the objects that humans care about 

 But… 

•  Can’t capture interdependencies between variables (obviously) 

•  For that, we need Bayes nets! 
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Learning Bayesian 
Networks 
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Bayesian Learning: Bayes’ Rule 

•  New idea: Instead of  choosing the single most likely model 
or finding the set of  all models consistent with training data, 
compute the posterior probability of each model given the 
training examples 

•  Bayesian learning:  
Compute posterior probability distribution of  the 
class of  a new example, conditioned on its input 
features and all training examples 
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Bayesian Learning: Bayes’ Rule 

•  Given some model space (set of  hypotheses hi) and 
evidence (data D): 
•  P(hi|D) = α P(D|hi) P(hi) 

•  We assume observations are independent of  each other, 
given a model (hypothesis), so: 
•  P(hi|D) = α ∏j P(dj|hi) P(hi) 

•  To predict the value of  some unknown quantity C 
 (e.g., the class label for a future observation): 
•  P(C|D) =  ∑i P(C|D, hi) P(hi|D) = ∑i P(C|hi) P(hi|D) 

These are equal by our
independence assumption

12 



3 

Example 

•  New example has inputs X=x and target features (class variables) Y  

•  e is the set of  training examples 

•  Goal: compute P(Y|X=x∧e) 

•  The probability distribution of  target variables given the inputs and the examples 

•  A model is assumed to have generated the examples; M is set of  models 

•  Then:         P(Y|x∧e)  = ∑m∈M P(Y ∧m |x∧e) 
   = ∑m∈M P(Y | m ∧x∧e) ×P(m|x∧e)  
   = ∑m∈M P(Y | m ∧x) ×P(m|e)  

•  Bayes’ rule: P(m|e) = (P(e|m)×P(m))/(P(e))  

•  So, weight of each model depends on how well it predicts the data and 
its prior probability 

13 Details: http://artint.info/html/ArtInt_196.html

Bayesian Learning, 3 Ways 

•  BMA (Bayesian Model Averaging) 
•  Don’t just choose one hypothesis; instead, make predictions based on 

the weighted average of  all hypotheses (or some set of  best hypotheses) 

•  MAP (Maximum A Posteriori) hypothesis 
•  Choose hypothesis with highest a posteriori probability, given data  
•  Maximize p(hi | D) 
•  Generally easier than Bayesian learning 
•  Closer to Bayesian prediction as more data arrives 

•  MLE (Maximum Likelihood Estimate) 
•  Assume all hypotheses are equally likely a priori; best hypothesis 

maximizes the likelihood (i.e., probability of  data given hypothesis) 
•  Maximize p(D | hi) 
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Bayesian Learning 

•  BMA (Bayesian Model Averaging) –  
average predictions of  hypotheses 

•  MAP (Maximum A Posteriori) hypothesis –  
Maximize p(hi | D) 

•  MLE (Maximum Likelihood Estimate) –  
Maximize p(D | hi) 

•  MDL (Minimum Description Length) principle:  Use 
some encoding to model the complexity of  the 
hypothesis, and the fit of  the data to the hypothesis, 
then minimize the overall description of  hi + D 
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Quick Review: Bayes Nets 

Qualitative part:  
statistical independence 
statements (causality!) 

•  Directed acyclic graph  
(DAG) 

•  Nodes - random 
variables of interest 
(exhaustive, mutually 
exclusive states) 

•  Edges - direct (causal) 
influence 

Slide © 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SRI International. All rights reserved. 

Quantitative part: 
Local probability 
models: set of 
conditional 
probability 
distributions. 
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Example: Coin Toss 

•  Models mathematically formulate observed events 

•  Parameters are factors in the models affecting 
outcomes 

•  Toin Coss Example 
•  Fairness of coin is the parameter, θ;  
•  Outcome of  the events is data, D 

•  E.g. heads = 72, tails = 28 

•  Given an outcome (D), what is the probability this coin is 
fair (θ=0.5)? 

•  Bayes’ rule: P(θ|D) = (P(D|θ) × P(θ))/P(D) 

www.analyticsvidhya.com/blog/2016/06/bayesian-statistics-beginners-simple-english 

Example: Coin Toss 

•  Bayes : P(θ|D) = (P(D|θ) × P(θ))/P(D) 

•  P(θ) is the prior: the strength of  our belief  in the fairness of  coin 
before the toss 
•  Can have any degree of  fairness between 0 and 1 

•  P(D|θ) is the likelihood of observing this result given 
distribution for θ 
•  Probability of  observing that number of  heads in a particular number of  

flips, given a fair coin 

•  P(D) is evidence: the probability of  observed data 
•  Determined by summing (or integrating) across all possible values of  θ, 

weighted by how strongly we believe in those particular values of  θ 

•  P(θ|D) is the posterior: belief  of  our parameters after observing 
the evidence 

www.analyticsvidhya.com/blog/2016/06/bayesian-statistics-beginners-simple-english 

The point: If we had multiple 
hypotheses about the fairness of the 
coin, but didn’t know for sure, then 

this tells us the probability of seeing a 
certain sequence of flips for each 

possible fairness.
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Learning Bayesian Networks  

•  Given training set 

•  Find B that best matches D 
•  model selection  

•  parameter estimation 
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Parameter Estimation 

•  Assume known structure 

•  Goal: estimate BN parameters q 
•  entries in local probability models, P(X | Parents(X)) 

•  A good parameterization q is likely to generate 
observed data: 

 

 

•  Maximum Likelihood Estimation (MLE) Principle:  
Choose q* to maximize L 

∏==
m
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i.i.d. samples
independent and identically distributed 
(i.i.d.) if each random variable has the 
same probability distribution as the 

others and all are mutually independent

Parameter Estimation II 

•  The likelihood decomposes according to the structure of  the 
network 
→ we get a separate estimation task for each parameter 

•  The MLE (maximum likelihood estimate) solution: 
•  for each value x of  a node X 
•  and each instantiation u of  Parents(X) 

•  Just need to collect the counts for every combination of  parents and 
children observed in the data 

•  MLE is equivalent to an assumption of  a uniform prior over 
parameter values 

)(
),(*

| uN
uxN

ux =θ sufficient statistics 
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Sufficient Statistics: Example 
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•  Why are the counts sufficient? 

Earthquake Burglary 

Alarm 

Moon-phase 

Light-level 

θ*
A | E, B = N(A, E, B) / N(E, B) 
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Model Selection 

Goal: Select the best network structure, given the data 

Input: 
•  Training data 

•  Scoring function 

Output: 
•  A network that maximizes the score 

• This is NP-hard!   
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Structure Selection: Scoring 

•  Bayesian: prior over parameters and structure 

•  Find balance between model complexity and fit to data 

•  Score (G:D) = log P(G|D) α log [P(D|G) P(G)] 

•  Marginal likelihood just comes from our parameter 
estimates 

•  Prior on structure can be any measure we want; 
typically a function of the network complexity 

Marginal likelihood Prior 
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Heuristic Search 
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Variations on a Theme 

•  Known structure, fully observable: only need to do 
parameter estimation 

•  Unknown structure, fully observable: do heuristic search 
through structure space, then parameter estimation 

•  Known structure, missing values: use expectation 
maximization (EM) to estimate parameters 

•  Known structure, hidden variables: apply adaptive 
probabilistic network (APN) techniques 

•  Unknown structure, hidden variables: too hard to solve! 
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Handling Missing Data 

•  Suppose that in some cases, we observe  
earthquake, alarm, light-level, and  
moon-phase, but not burglary 

•  Should we throw that data away?? 

•  Idea: Guess the missing values 
based on the other data 

Earthquake Burglary 

Alarm 

Moon-phase 

Light-level 
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EM (Expectation Maximization) 

•  Guess probabilities for nodes with missing values 
(e.g., based on other observations) 

•  Compute the probability distribution over the 
missing values, given our guess 

•  Update the probabilities based on the guessed 
values 

•  Repeat until convergence 
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EM Example 

•  Suppose we have observed Earthquake and Alarm but 
not Burglary for an observation on November 27 

•  We estimate the CPTs based on the rest of  the data 

•  We then estimate P(Burglary) for November 27 from 
those CPTs 

•  Now we recompute the  
CPTs as if  that estimated  
value had been observed 

•  Repeat until convergence! 

Earthquake Burglary 

Alarm 
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Knowledge-Based Agents 
(Logical Agents) 

?

Material from Dr. Marie desJardin, Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer  
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A Knowledge-Based Agent  

• A knowledge-based agent needs (at least): 
•  A knowledge base  
•  An inference system 

• A knowledge base (KB) is a set of  representations 
of  facts about the world.  
•  Each individual representation is a sentence or assertion 
•  Expressed in a knowledge representation language 
•  Usually starts with some background knowledge  

•  Can be general (world knowledge) or specific (domain language) 

• Many existing ideas apply – is it closed-world, etc. 
32 

A Knowledge-Based Agent  

• Operates as follows:  

1.  TELLs the 
knowledge base 
what it perceives. 

2.  ASKs the 
knowledge base 
what action to 
perform. 

3.  Performs the 
chosen action.  
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Architecture of  a  
Knowledge-Based Agent 

• Knowledge Level 
– The most abstract level 
– Describe agent by saying what it knows 

–  Example: A taxi agent might know that the Golden Gate Bridge 
connects San Francisco with the Marin County.  

• Logical Level  
– Level at which knowledge is encoded into sentences.  

–  Example: Links(GoldenGateBridge, SanFrancisco, MarinCounty)  

•  Implementation Level  
– The physical representation of  the sentences in the logical level.  

–  Example:  ‘(links goldengatebridge sanfrancisco marincounty)’
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The Wumpus World Environment  

• The Wumpus computer game 
•  Agent explores a cave consisting of  rooms connected by 

passageways. 

•  Lurking somewhere in the cave is the Wumpus, a beast that 
eats any agent that enters its room.  

•  Some rooms contain bottomless pits that trap any agent that 
wanders into the room.  

•  Occasionally, there is a heap of  gold in a room. 

•  The goal is to collect the gold and exit the world without 
being eaten (or trapped). 
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A Typical Wumpus World  

• The agent 
always starts in 
the field [1,1].  

•   The task of  the 
agent is to find 
the gold, return 
to the field [1,1] 
and climb out of  
the cave.  
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Agent in a Wumpus World: Percepts  

•  Agent perceives  
–  Stench in the square containing the wumpus and in adjacent squares (not 

diagonally)  
–  Breeze in the squares adjacent to a pit 
–  Glitter in the square where the gold is 
–  Bump, if  it walks into a wall 
–  Woeful scream everywhere in the cave, if  the wumpus is killed 

•  The percepts are given as a five-symbol list. 

•  If  there is a stench and a breeze, but no glitter, no bump, and no 
scream, the percept is: 

[Stench, Breeze, None, None, None] 

•  The agent cannot perceive its own location 

37 
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Wumpus Agent Actions 

•  go forward  

•  turn right 90 degrees 

•  turn left 90 degrees 

•  grab: Pick up an object that is in the same square as the agent 

•  shoot: Fire an arrow in a straight line in the direction the agent is facing. 
•  The arrow continues until it either hits and kills the wumpus or hits the outer wall.  
•  The agent has only one arrow, so only the first Shoot action has any effect  

•  climb: leave the cave. This action is only effective in the start square 

•  die: This action automatically happens if  the agent enters a square with a 
pit or a live wumpus 
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Wumpus Goal 

•  Agent’s goal is to: 
•  Find the gold  

•  Bring it back to the start square as quickly as possible 

•  Don’t get killed! 

•  Scoring 
•  1000 points reward for climbing out with the gold 

•  1 point deducted for every action taken 

•  10000 points penalty for getting killed 
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Wumpus Agent’s  
First Step 

¬W 

¬W 

Percepts: [None, None, None, None, None] Percepts: [None, Breeze, None, None, None]

Later 

¬W 

¬W 
¬P ¬P 

¬W 

¬W 
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Wumpuses Online 

•  http://www.cs.berkeley.edu/~russell/code/doc/
overview-AGENTS.html  

•  Lisp version from Russell & Norvig 

•  http://www.dreamcodex.com/wumpus.php – 
Java-based version you can play online 

•  http://codenautics.com/wumpus/ –  
Downloadable Mac version 
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Representation, Reasoning, and Logic 

•  Point of  knowledge representation is to express knowledge in 
a computer usable form 

•  Needed for agents to act on it (to do well, anyway) 

•  A knowledge representation language is defined by: 
•  Syntax: all possible sequences of  symbols that form sentences 

•  Example: noun referents  can be a single word or an adjective-then-noun 

•  Semantics: facts in the world to which the sentences refer  
•  What does it mean? 

•  Each sentence makes a claim about the world 

•  An agent is said to “believe” a sentence about the world 
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The Connection Between  
Sentences and Facts 

Semantics maps sentences in logic to facts in the world. 
The property of one fact following from another is mirrored 
by the property of one sentence being entailed by another. 
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“Dr M is sick with the flu” ⊨ “Dr M is sick”

Entailment and Derivation 

• Entailment: KB ⊨ Q 
•  Q is entailed by KB (a set of  premises or 

assumptions) if  and only if  there is no logically 
possible world in which Q is false while all the 
premises in KB are true.  

•  Or, stated positively, Q is entailed by KB if  and only if  
the conclusion is true in every logically possible world 
in which all the premises in KB  are true.  

• Derivation: KB ⊢ Q 
•  We can derive Q from KB if  there is a proof  

consisting of  a sequence of  valid inference steps 
starting from the premises in KB and resulting in Q 
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x ⊢ y:  y is provable from x

x ⊨ y:  x semantically entails y

Logic as a KR Language 

Propositional Logic 

First Order 

Higher  Order 

Modal 

Fuzzy 
Logic 

Multi-valued 
Logic 

Probabilistic 
Logic 

Temporal Non-monotonic 
Logic 
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Ontology and Epistemology 

•  Ontology is the study of what there is—an inventory of what 
exists. An ontological commitment is a commitment to an 
existence claim. 
•  Epistemology is a major branch of philosophy that concerns the 
forms, nature, and preconditions of knowledge. 
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No Independent World Access 

•  The reasoning agent often gets its knowledge about the facts of the world 
as a sequence of logical sentences.  

•  Must draw conclusions from them without (other) access to the world. 

•  Thus it is very important that the agent’s reasoning is sound! 
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KB Agents - Summary 

•  Intelligent agents need knowledge about the world for making good 
decisions.  

•  The knowledge of  an agent is stored in a knowledge base in the form of  
sentences in a knowledge representation language.  

•  A knowledge-based agent needs a knowledge base and an inference 
mechanism. It operates by storing sentences in its knowledge base, 
inferring new sentences with the inference mechanism, and using them to 
deduce which actions to take.  

•  A representation language is defined by its syntax and semantics, which 
specify structure of  sentences and how they relate to world facts. 

•  The interpretation of  a sentence is the fact to which it refers. If  this fact is 
part of  the actual world, then the sentence is true.  
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