

Today's Class • What's an agent? • Definition of an agent • Rationality and autonomy • Types of agents • Properties of environments

Human Sensors/Percepts, Actuators/Actions

- Sensors:
 - Eyes (vision), ears (hearing), skin (touch), tongue (gustation), nose (olfaction), neuromuscular system (proprioception), \dots
- Percepts: "that which is perceived"
- At the lowest level electrical signals from these sensors
- After preprocessing objects in the visual field (location, textures, colors, \ldots), auditory streams (pitch, loudness, direction), \ldots
- Actuators/effectors:
- Limbs, digits, eyes, tongue, ...
- - · Lift a finger, turn left, walk, run, carry an object, ...

Human Sensors/Percepts, Actuators/Actions

- · Sensors:
- Eyes (vision), ears (hearing), skin (touch), tongue (gustation), nose (olfaction), neuromuscular system (proprioception), ...
- · Percepts: "that which is perceive

- Actuators/effectors:
- Limbs, digits, eyes, tongue, ...
- At the lowest level electrical sign.
 After preprocessing objects in the ...), auditory streams (pitch, loudn to be carefully defined
 - · Sometimes at different
 - levels of abstraction!
- - Lift a finger, turn left, walk, run, carry an object, ...

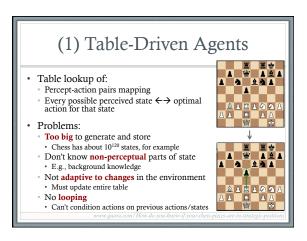
E.g.: Automated Taxi

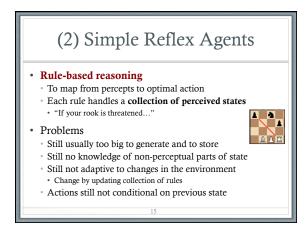
- Percepts: Video, sonar, speedometer, odometer, engine sensors, keyboard input, microphone, GPS, ...
- Actions: Turn, accelerate, brake, speak, display, ...
- Goals: Maintain safety, reach destination, maximize profits (fuel, tire wear), obey laws, provide passenger
- **Environment:** U.S. urban streets, freeways, traffic, pedestrians, weather, customers, ...

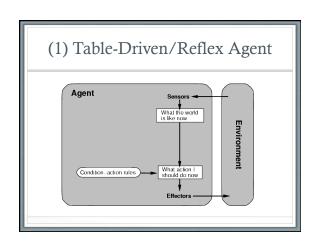
Different aspects of driving may require different types of agent programs.

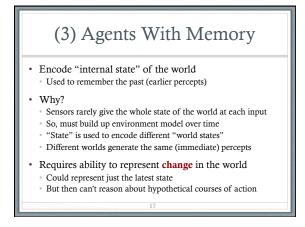
Rationality

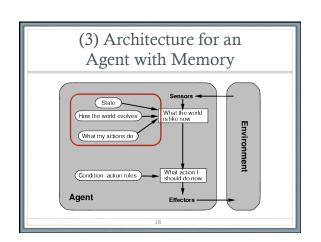
- An ideal rational agent, in every possible world state, does action(s) that maximize its expected performance
- - The percept sequence (world state)
 - Its knowledge (built-in and acquired)
- Rationality includes information gathering
 - If you don't know something, find out!
 - No "rational ignorance"
- Need a performance measure
- False alarm (false positive) and false dismissal (false negative) rates, speed, resources required, effect on environment, constraints met, user satisfaction, ...

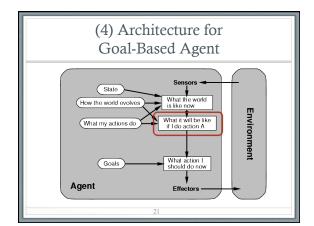

Autonomy


- An autonomous system is one that:
 - · Determines its own behavior
 - · Not all its decisions are included in its design
- · It is not autonomous if all decisions are made by its designer according to a priori decisions
- "Good" autonomous agents need:
 - Enough built-in knowledge to survive
 - · The ability to learn
- · In practice this can be a bit slippery


Some Types of Agent

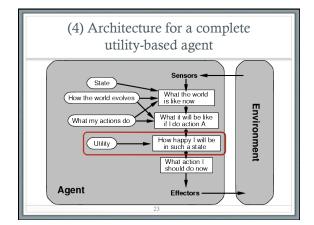

- 1. Table-driven agents
 - Use a percept sequence/action table to find the next action
- Implemented by a (large) lookup table
- 2. Simple reflex agents
 - Based on condition-action rules
- Implemented with a production system
- Stateless devices which do not have memory of past world states
- 3. Agents with memory
- Have internal state
- Used to keep track of past states of the world




Sidebar: Brooks' Subsumption Architecture

- · Main idea: build complex, intelligent robots by:

 - Decomposing behaviors into a hierarchy of skills Each skill completely defines a percept-action cycle for a specific task
- Example skills:
- Avoiding physical contact
- Wandering/exploring
- Recognizing doorways
- Behavior is modeled by a finite-state machine with a few
 - · Each state may correspond to a complex function or module
- Behaviors are loosely coupled, asynchronous interactions


(4) Goal-Based Agents

- Choose actions that achieve a goal
 - · Which may be given, or computed by the agent
- A goal is a description of a desirable state
- Need goals to decide what situations are "good"
- Keeping track of the current state is often not enough
- · Deliberative instead of reactive
 - Must consider sequences of actions to get to goal
 - Involves thinking about the future
 - "What will happen if I do...?"

(5) Utility-Based Agents

- How to choose from multiple alternatives?
- What action is best?
- - Goals → crude distinction between "happy" / "unhappy" states
 - Often need a more general performance measure (how "happy"?)
- Utility function gives success or happiness at a given state
- Can compare choice between:
- Conflicting goals
- Likelihood of success
- Importance of goal (if achievement is uncertain)

Properties of Environments · Fully observable/Partially observable If an agent's sensors give it access to the complete state of the environment, the environment is fully observable Such environments are convenient · No need to keep track of the changes in the environment · No need to guess or reason about non-observed things · Such environments are also rare in practice

Properties of Environments

- · Deterministic/Stochastic.
 - An environment is **deterministic** if:
 - The next state of the environment is completely determined by
 - · The current state of the environment
 - · The action of the agent
 - In a **stochastic** environment, there are multiple, unpredictable outcomes.
- In a fully observable, deterministic environment, the agent has no *uncertainty*.

2

Properties of Environments

· Episodic/Sequential.

- Episodic: subsequent episodes do not depend on what actions occurred in previous episodes.
- Sequential environment: Agent engages in a series of connected enjsodes.
- Such environments do not require the agent to plan ahead.

• Static/Dynamic

- A static environment does not change while the agent is thinking.
- The passage of time as an agent deliberates is irrelevant.
- The agent doesn't need to observe the world during deliberation.

26

Properties of Environments III

· Discrete/Continuous

- If the number of distinct percepts and actions is limited, the environment is discrete, otherwise it is continuous.
- · A discrete agent:
- Receives percepts describing the world one at a time
- Maps this percept sequence to a sequence of discrete actions

· Single agent/Multi-agent

- Whether the environment contains other intelligent agents.
- $^\circ$ In multi-agent environments, there are game-theoretic concerns (for either cooperative or competitive agents)
- Single-agent environments are still more common.
- Social and economic systems get complexity from agent interactions.

2.7

Characteristics of Environments

	Fully observable?	Deterministic?	Episodic?	Static?	Discrete?	Single agent?
Solitaire						
Backgammon						
Taxi driving						
Internet shopping						
Medical diagnosis						

28

Characteristics of Environments

	Fully observable?	Deterministic?	Episodic?	Static?	Discrete?	Single agent?
Solitaire	No	Yes	Yes	Yes	Yes	Yes
Backgammon						
Taxi driving						
Internet shopping						
Medical diagnosis						

Characteristics of Environments

	Fully observable?	Deterministic?	Episodic?	Static?	Discrete?	Single agent?
Solitaire	No	Yes	Yes	Yes	Yes	Yes
Backgammon	Yes	No	No	Yes	Yes	No
Taxi driving						
Internet shopping						
Medical diagnosis						

30

Characteristics of Environments Episodic? Fully observable? No Yes Yes Yes Yes Yes Backgammon Yes No No Yes Yes No No Taxi driving No No No Internet shopping Medical diagnosis

	Fully observable?	Deterministic?	Episodic?	Static?	Discrete?	Single agent?
Solitaire	No	Yes	Yes	Yes	Yes	Yes
Backgammon	Yes	No	No	Yes	Yes	No
Taxi driving	No	No	No	No	No	No
Internet	No	No	No	No	Yes	No
Medical diagnosis						

	Fully observable?	Deterministic?	Episodic?	Static?	Discrete?	Single agent?
Solitaire	No	Yes	Yes	Yes	Yes	Yes
Backgammon	Yes	No	No	Yes	Yes	No
Taxi driving	No	No	No	No	No	No
Internet shopping	No	No	No	No	Yes	No
Medical diagnosis	No	No	No	No	No	Yes

Characteristics of Environments								
	Fully observable?	Deterministic?	Episodic?	Static?	Discrete?	Single agent?		
Solitaire	No	Yes	Yes	Yes	Yes	Yes		
Backgammon	Yes	No	No	Yes	Yes	No		
Taxi driving	No	No	No	No	No	No		
Internet shopping	No	No	No	No	Yes	No		
Medical diagnosis	No	No	No	No	No	Yes		
→ Lots of (most?) rea	al-world don		nto th	e hardes	t case! ←		

• An agent: • Perceives and acts in an environment • Has an architecture • Is implemented by an agent program(s) • An ideal agent: • Always chooses the "right" action • Which is, that which maximizes its expected performance • Given its percept sequence so far!

- An autonomous agent:
- Uses its own experience to learn and make decisions
- Not built-in knowledge, i.e., a priori world knowledge by the designer

35

Summary: Agents

- Representing knowledge is important for successful agent design
 - Percepts, actions and their effects, constraints, ...
- The most challenging environments are:
 - Partially observable
 - Stochastic
 - Sequential
 - Dynamic
 - Continuous
 - Contain multiple intelligent agents

36