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Machine Learning III: 
Beyond Decision Trees 

AI Class 15 (Ch. 20.1–20.2) 

Cynthia Matuszek – CMSC 671 Material from Dr. Marie desJardin,  1 
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Today’s Class 

•  Extensions to Decision Trees 

•  Sources of  error 

•  Evaluating learned models 

•  Bayesian Learning 

•  MLA, MLE, MAP 

•  Bayesian Networks I 

ß Review: What is induction?
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Extensions of  the Decision Tree 
Learning Algorithm 

•  Using gain ratios 

•  Real-valued data 

•  Noisy data and overfitting 

•  Generation of  rules 

•  Setting parameters 

•  Cross-validation for experimental validation of  performance 

•  C4.5 is an extension of  ID3 that accounts for  unavailable 
values, continuous attribute value ranges, pruning of  
decision trees, rule derivation, and so on 
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Using Gain Ratios 

•  Information gain favors attributes with a large number 
of values 
•  If  we have an attribute D that has a distinct value for each 

record, then Info(D,T) is 0, thus Gain(D,T) is maximal 

•  To compensate, use the following ratio instead of  Gain: 
GainRatio(D,T) = Gain(D,T) / SplitInfo(D,T) 

•  SplitInfo(D,T) is the information due to the split of  T on 
the basis of  value of  categorical attribute D 
SplitInfo(D,T)  =  I(|T1|/|T|, |T2|/|T|, .., |Tm|/|T|) 

where {T1, T2, .. Tm} is the partition of  T induced by value 
of  D 
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Real-Valued Data 

•  Select a set of  thresholds defining intervals 
•  Each interval becomes a discrete value of  the attribute 

•  How? 
•  Use simple heuristics… 

•  Always divide into quartiles 

•  Use domain knowledge… 
•  Divide age into infant (0-2), toddler (3 - 5), school-aged (5-8) 

•   Or treat this as another learning problem  
•  Try a range of  ways to discretize the continuous variable and see 

which yield “better results” w.r.t. some metric 
•  E.g., try midpoint between every pair of  values 
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Noisy Data 

• Many kinds of  “noise” can occur in the examples: 
•  Two examples have same attribute/value pairs, but 

different classifications  

•  Some values of  attributes are incorrect  
•  Errors in the data acquisition process, the preprocessing phase, // 

•  Classification is wrong (e.g., + instead of  -) because of  
some error  

•  Some attributes are irrelevant to the decision-making 
process, e.g., color of  a die is irrelevant to its outcome 

•  Some attributes are missing (are pangolins bipedal?) 
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Overfitting 

•  Overfitting: coming up with a model that is TOO specific to 
your training data 
•  Does well on training set but not new data 
•  How can this happen? 

•  Too little training data 

•  Irrelevant attributes 
•  high-dimensional (many attributes) hypothesis space à meaningless 

regularity in the data irrelevant to important, distinguishing features 
•  Fix by pruning lower nodes in the decision tree 
•  For example, if  Gain of  the best attribute at a node is below a threshold, 

stop and make this node a leaf  rather than generating children nodes 
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Pruning Decision Trees 

•  Replace a whole subtree by a leaf  node 

•  If: a decision rule establishes that he expected error rate in the subtree is 
greater than in the single leaf. E.g., 
•  Training: one training red success and two training blue failures 
•  Test: three red failures and one blue success 
•  Consider replacing this subtree by a single Failure node. (leaf) 

•  After replacement we will have only two errors instead of  five: 

Color 

1 success 
0 failure 

0 success 
2 failures 

red blue 

Color 

1 success 
3 failure 

1 success 
1 failure 

red blue 2 success 
4 failure 

FAILURE Training Test Pruned 
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Converting Decision Trees to Rules 

•  It is easy to derive a rule set from a decision tree:  
•  Write a rule for each path in the decision tree from the root to a leaf  

•  Left-hand side is label of  nodes and labels of  arcs 

•  The resulting rules set can be simplified: 
•  Let LHS be the left hand side of  a rule 
•  Let LHS’ be obtained from LHS by eliminating some conditions  
•  We can replace LHS by LHS’ in this rule if  the subsets of  the training 

set that satisfy respectively LHS and LHS’ are equal 

•  A rule may be eliminated by using metaconditions such as 
“if  no other rule applies” 
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Measuring Model Quality 

•  How good is a model? 
•  Predictive accuracy 

•  False positives / false negatives for a given cutoff  threshold 
•  Loss function (accounts for cost of  different types of  errors) 

•  Area under the (ROC) curve 

•  Minimizing loss can lead to problems with overfitting 
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Measuring Model Quality 

•  Training error 
•  Train on all data; measure error on all data 

•  Subject to overfitting (of  course we’ll make good 
predictions on the data on which we trained!) 

•  Regularization 
•  Attempt to avoid overfitting 

•  Explicitly minimize the complexity of  the function while 
minimizing loss 

•  Tradeoff  is modeled with a regularization parameter 
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Cross-Validation 

•  Holdout cross-validation: 
•  Divide data into training set and test set 

•  Train on training set; measure error on test set 

•  Better than training error, since we are measuring 
generalization to new data 

•  To get a good estimate, we need a reasonably large test set 

•  But this gives less data to train on, reducing our model 
quality! 
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Cross-Validation, cont. 

•  k-fold cross-validation: 
•  Divide data into k folds 
•  Train on k-1 folds, use the kth fold to measure error 
•  Repeat k times; use average error to measure generalization 

accuracy 
•  Statistically valid and gives good accuracy estimates 

•  Leave-one-out cross-validation (LOOCV) 
•  k-fold cross validation where k=N (test data = 1 instance!) 
•  Quite accurate, but also quite expensive, since it requires 

building N models 
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Chapter 20.1-20.2 

Bayesian Learning 

Some material adapted from lecture notes by Lise Getoor and Ron Parr 15 

Naïve Bayes 

•  Use Bayesian modeling 

•  Make the simplest possible independence 
assumption: 
•  Each attribute is independent of  the values of  the other 

attributes, given the class variable 

•  In our restaurant domain:  Cuisine is independent of  
Patrons, given a decision to stay (or not) 
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Bayesian Formulation 

•  The probability of  class C given F1, ..., Fn 
 p(C | F1, ..., Fn) = p(C) p(F1, ..., Fn | C) / P(F1, ..., Fn)�

     = α p(C) p(F1, ..., Fn | C)

•  Assume that each feature Fi is conditionally independent of  the 
other features given the class C.  Then: 

 p(C | F1, ..., Fn)  = α p(C) Πi p(Fi | C) 

•  We can estimate each of  these conditional probabilities from the 
observed counts in the training data: 

 p(Fi | C)  = N(Fi ∧ C) / N(C)
•  One subtlety of  using the algorithm in practice: When your estimated 

probabilities are zero, ugly things happen 
•  The fix: Add one to every count (aka “Laplacian smoothing”) 
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Naive Bayes: Example 

•  p(Wait | Cuisine, Patrons, Rainy?) �
 = α p(Cuisine ∧ Patrons ∧ Rainy? | Wait)�

= α p(Wait) p(Cuisine | Wait) p(Patrons | Wait) �
 p(Rainy? | Wait)

 naive Bayes assumption:  is it reasonable? 

18 

Naive Bayes: Analysis 

•  Naïve Bayes is amazingly easy to implement (once 
you understand the bit of  math behind it) 

•  Naïve Bayes can outperform many much more 
complex algorithms—it’s a baseline that should 
pretty much always be used for comparison 

•  Naive Bayes can’t capture interdependencies 
between variables (obviously)—for that, we need 
Bayes nets! 
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