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Extensions of the Decision Tree
Learning Algorithm

Using gain ratios

Real-valued data

Noisy data and overfitting

Generation of rules

Setting parameters

Cross-validation for experimental validation of performance

C4.5 is an extension of D3 that accounts for unavailable
values, continuous attribute value ranges, pruning of
decision trees, rule derivation, and so on
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Real-Valued Data

Select a set of thresholds defining intervals
 Each interval becomes a discrete value of the attribute

How?
« Use simple heuristics. ..
« Always divide into quartiles
« Use domain knowledge...
« Divide age into infant (0-2), toddler (3 - 5), school-aged (5-8)
+ Or treat this as another learning problem

« Try a range of ways to discretize the continuous variable and see
which yield “better results” w.r.t. some metric

« E.g., try midpoint between every pair of values
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Today’s Class

Extensions to Decision Trees
Sources of error

Evaluating learned models
Bayesian Learning

MLA, MLE, MAP

Bayesian Networks I

Using Gain Ratios

Information gain favors attributes with a large number
of values

« If we have an attribute D that has a distinct value for each
record, then Info(D,T) is 0, thus Gain(D,T) is maximal

To compensate, use the following ratio instead of Gain:
GainRatio(D,T) = Gain(D,T) / SplitInfo(D,T)

SplitInfo(D,T) is the information due to the split of T on
the basis of value of categorical attribute D
SplitInfo(D,T) = I(IT,|/|TI, IT,|/ITI, .., IT,/ITI)

whefre {T, T,, .. T} is the partition of T induced by value
of D
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Noisy Data

* Many kinds of “noise” can occur in the examples:

« Two examples have same attribute/value pairs, but
different classifications

© Some values of attributes are incorrect
« Errors in the data acquisition process, the preprocessing phase, //

« Classification is wrong (e.g., + instead of -) because of
some error

© Some attributes are irrelevant to the decision-making
process, e.g., color of a die is irrelevant to its outcome

© Some attributes are missing (are pangolins bipedal?)
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Overfitting

* Overfitting: coming up with a model that is TOO specific to
your training data
Does well on training set but not new data
How can this happen?

* Too little training data

« Irrelevant attributes

high-dimensional (many attributes) hypothesis space - meaningless
regularity in the data irrelevant to important, distinguishing features

Fix by pruning lower nodes in the decision tree

For example, if Gain of the best attribute at a node is below a threshold,
stop and make this node a leaf rather than generating children nodes
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Converting Decision Trees to Rules

It is easy to derive a rule set from a decision tree:
‘Write a rule for each path in the decision tree from the root to a leaf

Left-hand side is label of nodes and labels of arcs

The resulting rules set can be simplified:
Let LHS be the left hand side of a rule
Let LHS’ be obtained from LHS by eliminating some conditions

‘We can replace LHS by LHS’ in this rule if the subsets of the training
set that satisfy respectively LHS and LHS’ are equal

A rule may be eliminated by using metaconditions such as
“if no other rule applies”

Measuring Model Quality

* Training error
Train on all data; measure error on all data

Subject to overfitting (of course we’ll make good
predictions on the data on which we trained!)

» Regularization
Attempt to avoid overfitting
Explicitly minimize the complexity of the function while
minimizing loss
Tradeoff is modeled with a regularization parameter
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Pruning Decision Trees

« Replace a whole subtree by a leaf node

+ If: a decision rule establishes that he expected error rate in the subtree is
greater than in the single leaf. E.g.,
Training: one training red success and two training blue failures
Test: three red failures and one blue success
Consider replacing this subtree by a single Failure node. (leaf)

«  After replacement we will have only two errors instead of five:

Pruned
FAILURE
red blue red blue 2 success

1success 0 success 1success 1 success 4 failure
0 failure 2 failures 3 failure 1 failure

Training Test
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Measuring Model Quality

* How good is a model?
Predictive accuracy
False positives / false negatives for a given cutoff threshold
* Loss function (accounts for cost of different types of errors)
Area under the (ROC) curve

Minimizing loss can lead to problems with overfitting

Cross-Validation

* Holdout cross-validation:
Divide data into training set and test set
Train on training set; measure error on test set
Better than training error, since we are measuring
generalization to new data
To get a good estimate, we need a reasonably large test set
But this gives less data to train on, reducing our model
quality!




Cross-Validation, cont.

* k-fold cross-validation:
« Divide data into # folds
« Train on k-1 folds, use the kth fold to measure error

- Repeat k times; use average error to measure generalization

accuracy
« Statistically valid and gives good accuracy estimates

» Leave-one-out cross-validation (LOOCYV)

* k-fold cross validation where #=N (test data = 1 instance!)
* Quite accurate, but also quite expensive, since it requires

building N models

Naive Bayes

» Use Bayesian modeling

» Make the simplest possible independence
assumption:
- Each attribute is independent of the values of the other
attributes, given the class variable

* In our restaurant domain: Cuisine is independent of
Patrons, given a decision to stay (or not)

Naive Bayes: Example

* p(Wait | Cuisine, Patrons, Rainy?)
= a. p(Cuisine A Patrons A Rainy? | Wait)
= o p(Wait) p(Cuisine | Wait) p(Patrons | Wait)
p(Rainy? | Wait)

naive Bayes assumption: is it reasonable?

Bayesian Learning

Chapter 20.1-20.2

Bayesian Formulation

The probability of class C given F,, ..., F,
p(CIF,,....F,)=p(C) p(F,, ..., F, 1C) / P(F,, ..., F,)
=ap(C) p(Fy, ..., F,1C)

Assume that each feature F; is conditionally independent of the
other features given the class C. Then:
p(CIF,,..,F,) =ap(C)II, p(F, | C)

‘We can estimate each of these conditional probabilities from the
observed counts in the training data:
p(F;1C) =N(F; A C)/N(C)
* One subtlety of using the algorithm in practice: When your estimated
probabilities are zero, ugly things happen
 The fix: Add one to every count (aka “Laplacian smoothing”)
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Naive Bayes: Analysis

Naive Bayes is amazingly easy to implement (once
you understand the bit of math behind it)

Naive Bayes can outperform many much more
complex algorithms—it’s a baseline that should
pretty much always be used for comparison

Naive Bayes can’t capture interdependencies
between variables (obviously)—for that, we need
Bayes nets!




