

Extensions of the Decision Tree Learning Algorithm

- Using gain ratios
- Real-valued data
- Noisy data and overfitting
- Generation of rules
- Setting parameters
- Cross-validation for experimental validation of performance
- C4.5 is an extension of ID3 that accounts for unavailable values, continuous attribute value ranges, pruning of decision trees, rule derivation, and so on

Today's Class

- Extensions to Decision Trees
- Sources of error
- Evaluating learned models
- Bayesian Learning
- MLA, MLE, MAP
- Bayesian Networks I

Real-Valued Data

- Select a set of thresholds defining intervals
- Each interval becomes a discrete value of the attribute
- How?
- Use simple heuristics...
- Always divide into quartiles

Use domain knowledge...

- Divide age into infant ($0-2$), toddler (3-5), school-aged (5-8)

Or treat this as another learning problem

- Try a range of ways to discretize the continuous variable and see which yield "better results" w.r.t. some metric
- E.g., try midpoint between every pair of values

Noisy Data

- Many kinds of "noise" can occur in the examples:
- Two examples have same attribute/value pairs, but different classifications
- Some values of attributes are incorrect
- Errors in the data acquisition process, the preprocessing phase, //
- Classification is wrong (e.g., + instead of -) because of some error
- Some attributes are irrelevant to the decision-making process, e.g., color of a die is irrelevant to its outcome
- Some attributes are missing (are pangolins bipedal?)

Overfitting

- Overfitting: coming up with a model that is TOO specific to your training data
- Does well on training set but not new data

How can this happen?

- Too little training data
- Irrelevant attributes
high-dimensional (many attributes) hypothesis space \rightarrow meaningless regularity in the data irrelevant to important, distinguishing features
Fix by pruning lower nodes in the decision tree
For example, if Gain of the best attribute at a node is below a threshold, stop and make this node a leaf rather than generating children nodes

Converting Decision Trees to Rules

- It is easy to derive a rule set from a decision tree: Write a rule for each path in the decision tree from the root to a leaf
- Left-hand side is label of nodes and labels of arcs
- The resulting rules set can be simplified:

Let LHS be the left hand side of a rule
Let LHS' be obtained from LHS by eliminating some conditions

- We can replace LHS by LHS' in this rule if the subsets of the training set that satisfy respectively LHS and LHS' are equal
- A rule may be eliminated by using metaconditions such as "if no other rule applies"

Measuring Model Quality

- Training erro

- Train on all data; measure error on all data
- Subject to overfitting (of course we'll make good predictions on the data on which we trained!)
- Regularization
- Attempt to avoid overfitting
- Explicitly minimize the complexity of the function while minimizing loss
- Tradeoff is modeled with a regularization parameter

$$
12
$$

Pruning Decision Trees

- Replace a whole subtree by a leaf node
- If: a decision rule establishes that he expected error rate in the subtree is greater than in the single leaf. E.g.,
Training: one training red success and two training blue failures
Test: three red failures and one blue success
Consider replacing this subtree by a single Failure node. (leaf)
- After replacement we will have only two errors instead of five:

Measuring Model Quality

- How good is a model?
- Predictive accuracy
- False positives / false negatives for a given cutoff threshold
- Loss function (accounts for cost of different types of errors)
- Area under the (ROC) curve
- Minimizing loss can lead to problems with overfitting

Measuring Model
- Training error
- Train on all data; measure error on all data
- Subject to overfitting (of course we'll make good
predictions on the data on which we trained!)
- Regularization
- Attempt to avoid overfitting
- Explicitly minimize the complexity of the function while
minimizing loss
- Tradeoff is modeled with a regularization parameter

Cross-Validation

- Holdout cross-validation:
- Divide data into training set and test set
- Train on training set; measure error on test set
- Better than training error, since we are measuring generalization to new data
- To get a good estimate, we need a reasonably large test set
- But this gives less data to train on, reducing our model quality!

Cross-Validation, cont.

- k-fold cross-validation:
- Divide data into k folds
- Train on $k-1$ folds, use the k th fold to measure error
- Repeat k times; use average error to measure generalization accuracy
- Statistically valid and gives good accuracy estimates
- Leave-one-out cross-validation (LOOCV)
- k-fold cross validation where $k=N$ (test data $=1$ instance!)
- Quite accurate, but also quite expensive, since it requires building N models

Bayesian Learning

Chapter 20.1-20.2

Some material Sdapted from lecture notes by Lise Getoor and Ron Parr

Bayesian Formulation

- The probability of class C given $\mathrm{F}_{1}, \ldots, \mathrm{~F}_{\mathrm{n}}$ $\mathbf{p}\left(\mathbf{C} \mid F_{1}, \ldots, F_{n}\right)=\mathbf{p}(C) \mathbf{p}\left(F_{1}, \ldots, F_{n} \mid C\right) / P\left(F_{1}, \ldots, F_{n}\right)$
$=\alpha p(C) p\left(F_{1}, \ldots, F_{n} \mid C\right)$
- Assume that each feature F_{i} is conditionally independent of the other features given the class C . Then: $p\left(C \mid F_{1}, \ldots, F_{n}\right)=\alpha p(C) \Pi_{i} p\left(F_{i} \mid C\right)$
- We can estimate each of these conditional probabilities from the observed counts in the training data: $\mathrm{p}\left(\mathrm{F}_{\mathrm{i}} \mathrm{I} \mathrm{C}\right)=\mathrm{N}\left(\mathrm{F}_{\mathrm{i}} \wedge \mathrm{C}\right) / \mathrm{N}(\mathrm{C})$
- One subtlety of using the algorithm in practice: When your estimated probabilities are zero, ugly things happen
- The fix: Add one to every count (aka "Laplacian smoothing")

Naive Bayes: Example

- p(Wait I Cuisine, Patrons, Rainy?)
$=\alpha \mathrm{p}$ (Cuisine \wedge Patrons \wedge Rainy? I Wait)
$=\alpha \mathrm{p}$ (Wait) p (Cuisine I Wait) p (Patrons I Wait)
p (Rainy? I Wait)
naive Bayes assumption: is it reasonable?

Naive Bayes: Analysis

- Naïve Bayes is amazingly easy to implement (once you understand the bit of math behind it)
- Naïve Bayes can outperform many much more complex algorithms-it's a baseline that should pretty much always be used for comparison
- Naive Bayes can't capture interdependencies between variables (obviously) -for that, we need Bayes nets!

