MidTERM REVIEW

AI Class 13

Bookkeeping

- HW3
- Midterm is next class period, in class
- Covers through multi-agent systems
- Study material should include all readings
- Project
- Overview today, details after exam
- Please fill out Google team form (posted on schedule)
- If you aren't part of a 2-4 person team or would like more members, you must solve it by next Tuesday

Today's Class

- Midterm review
- Project overview
- New Eleusis practice
- Maybe.
- The ideal \# for New Eleusis is 6 players, so we will combine teams
- You should play with your team, however

Midterm Review

10/19
In class

What Will it Be Like?

- Broadly:
- Turn a problem description into a solution
- Work through a problem to reach a solution
- Demonstrate a conceptual grasp of the material
- Concepts $\leftarrow \rightarrow$ Algorithms and Implementations
- Basic idea: you need to understand the ideas behind the material we have covered, and be able to apply it to solving problems.

What Kind of Questions?

- T/F, multiple choice, fill in the blank
- Write definitions of terms
- Work through an \{algorithm| solution type| problem
- Draw something - search trees, states, Bayes nets, paths through a map, ...
- Write a short answer to English questions
- E.g.: What approach would you use to solve this problem?
- E.g.: "We know these are independent. Why?"

What Do I Need To Do?

- Homeworks and lectures should be good practice
- Coding questions (not minor syntax mistakes, etc.)
- We're looking for "I understand this well enough to implement it," not "I know Python really well"
- Look at homeworks, sample problems in lectures, and class exercises
- Look at lectures' "Why?" questions.

Scoring

- Follow directions.
- Start with a perfect score, mark down for mistakes
- If I ask for 2 examples, and you give 3, one of which is wrong, it's -1 , not $-1 / 3$
- Read carefully.
- You have time.
- "I didn't see the part that said..."
- Ask for clarification on, e.g., unfamiliar words

Topics: AI

- What is intelligence?
- What is AI?
- What is it used for? Good for?
- Historical events and figures

Topics: Agents

- Agents
- What kinds are there?
- What do they do?
- How do we characterize them (what traits do they have)?
- Autonomy, rationality, ..?
- How do they interact with an environment?
- Environments
- What's an environment?
- How is it characterized?

Topics: Search

- What is it for?
- Elements of a search problem
- State spaces, actions, costs, ...
- How do state spaces pertain to search?
- To problem-solving?
- Exploring search space (selecting, expanding, generating, evaluating)
- Specific algorithms: How do they work? What are they good for? What are their weaknesses?

Topics: Formalizing Search

- What are the elements of a search problem?
- "Express $[X]$ as a search problem." What does that mean?
- States: every state a puzzle can be in
- Actions/Operations: how you get between states
- Solutions: you need a goal test (and sometimes a heuristic, or estimate of distance from goal)
- Sometimes we care about path (planning), sometimes just goal (identification). Can you say which, for a given problem?
- Costs: not all solutions or actions are equal

Topics: Uninformed Search

- Why do uninformed search?
- Come up with some examples of uninformed search problems
- Important algorithms: BFS, DFS, iterative deepening, uniform cost
- A (very) likely question: "What would be the best choice of search method for [problem], and why?"
- Characteristics of algorithms
- Completeness, optimality, time and space complexity, ...

Topics: Informed Search

- Some external or pre-existing information says what part of state space is more likely to have a solution
- Heuristics encode this information: $h(n)$
- Pop quiz: What does $h(n)=0$ mean?
- Admissibility \& Optimality
- Some algorithms can be optimal when using an admissible heuristic

> A heuristic applies to a node, can give optimal solution with the right algorithm

- Algorithms: best-first, greedy search, A*, IDA*, SMA*
- What's a good heuristic for a problem? Why?

Sample Problem

Apply the following to search this space. At each search step, show: current node being expanded, $g(n)$ (path cost so far), $h(n)$ (heuristic estimate), $f(n)$ (evaluation function), and $h^{*}(n)$ (true goal distance).

Depth-first search
Uniform-cost search

Breadth-first search
A* search
Greedy search

Topics: Local Search

- Idea: Keep a single "current" state, try to improve it
- Don't keep path to goal
- Don't keep entire search in memory
- Go to "successor states"
- Concepts: hill climbing, local maxima/minima, random restarts
- Important algorithms: hill climbing, local beam search, simulated annealing

HW2

- How many states are there?
- What operations fully encode this search problem?
- That is: how can you reach every state?
- Are there loops?
- How many states does pure DFS visit?
- If there are loops?
- What's a good algorithm? A bad one?

Topics: CSPs

- Constraint Satisfaction: subset of search problems

1. State is defined by random variables X_{i}
2. With values from a domain D
3. Knowledge about problem can be expressed as constraints on what values X_{i} can take

- Special algorithms, esp. on constraint networks
- How would you express [X] as a CSP? As a search? How would you represent the constraints?
- E.g.: "Must be alphabetical"

Topics: Constraint Networks

- Constraint propagation: constraints can be propagated through a constraint network
- Goal: maintain consistency (constraints aren't violated)
- Concepts: Variable ordering, value ordering, fail-first
- Important algorithms:

1. Backtracking: DFS, but at each point:

- Only consider a single variable
- Only allow legal assignments

2. Forward checking

Topics: Games

- Why play games? What games, and how?
- Characteristics: zero-sum, deterministic, perfect information (or not)
- What's the search tree for a game? How big is it?
- How would you express game $[X]$ as a search? What are the states, actions, etc.? How would you solve it?
- Algorithms: (expecti)minimax, alpha-beta pruning
- Many examples on slides

Topics: Basic Probability

- What is uncertainty?
- What are sources of uncertainty in a problem?
- Non-deterministic, partially observable, noisy observations, noisy reasoning, uncertain cause/effect world model, continuous problem spaces...
- World of all possible states: a complete assignment of values to random variables
- Joint probability, conditional probability

Topics: Basic Probability

- Independence: A and B are independent
- $P(\mathrm{~A}) \Perp \mathrm{P}(\mathrm{B})$ iff $P(\mathrm{~A} \wedge \mathrm{~B})=P(\mathrm{~A}) P(\mathrm{~B})$
- A and B do not affect each other's probability
- Conditional independence: A and B are independent given C
- $P(\mathrm{~A} \wedge \mathrm{~B} \mid \mathrm{C})=P(\mathrm{~A} \mid \mathrm{C}) P(\mathrm{~B} \mid \mathrm{C})$
- A and B don't affect each other if C is known

Topics: Basic Probability

- $\mathrm{P}(a \mid b)=\frac{\mathrm{P}(a \wedge b)}{\mathrm{P}(b)} \quad$ - $\mathrm{P}(a \wedge b)=\mathrm{P}(a \mid b) \mathrm{P}(b)$

$\begin{gathered} P(\text { smart } \wedge \\ \text { study } \wedge \text { prep }) \approx \end{gathered}$	smart		\neg smart	
	study	\rightarrow study	study	\rightarrow study
prepared	. 432	. 16	. 084	. 008
\neg prepared	. 048	. 16	. 036	. 072

- What is the prior probability of smart?
- What is the conditional probability of prepared, given study and smart?
- Is prepared independent of study?

Topics: Probabilistic Reasoning

- Concepts:
- Posteriors and Priors; Bayesian Reasoning; Induction and Deduction; Probabilities of Events
- [In]dependence, conditionality, marginalization
- What is Bayes' Rule and what is it useful for?

$$
\begin{aligned}
& P\left(H_{i} \mid E_{j}\right)=\frac{P\left(E_{j} \mid H_{i}\right) P\left(H_{i}\right)}{P\left(E_{j}\right)} \\
& P(\text { cause } \mid \text { effect })=\frac{P(\text { effect } \mid \text { cause }) P(\text { cause })}{P(\text { effect })}
\end{aligned}
$$

Topics: Joint Probability

What is the joint probability of A and B ?

- $P(\mathrm{~A}, \mathrm{~B})$
- The probability of any set of legal assignments.
- Booleans: expressed as a matrix/table

	alarm	\neg alarm
burglary	0.09	0.01
\neg burglary	0.1	0.8

\asymp| \mathbf{A} | \mathbf{B} | |
| :---: | :---: | :--- |
| T | T | 0.09 |
| T | F | 0.1 |
| F | T | 0.01 |
| F | F | 0.8 |

- Continuous domains \rightarrow probability functions

Conditional Probability Tables

- For X_{i}, CPD $P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$ quantifies effect of parents on X_{i}
- Parameters are probabilities in conditional probability tables (CPTs):

BBN Definition

- AKA Bayesian Network, Bayes Net
- A graphical model (as a DAG) of probabilistic relationships among a set of random variables
- Links represent direct influence of one variable on another

Simple Bayesian Network

$S \in\{$ no, light, heavy $\}$ Smoking \longrightarrow Cancer

$P(S=$ no $)$	0.80
$P(S=$ light $)$	0.15
$P(S=$ heavy $)$	0.05

Smoking=	no	light	heavy
$P(C=$ none $)$	0.96	0.88	0.60
$P(C=$ benign $)$	0.03	0.08	0.25
$P(C=$ malig $)$	0.01	0.04	0.15

More Complex Bayesian Network

More Complex Bayesian Network

Nodes represent variables

- Does gender cause smoking?
- Influence might be a more appropriate term

Independence

Age and Gender are independent.

$$
\begin{aligned}
& P(A, G)=P(G) * P(A) \\
& P(A \mid G)=P(A) \\
& P(G \mid A)=P(G) \\
& P(A, G)=P(G \mid A) P(A)=P(G) P(A) \\
& P(A, G)=P(A \mid G) P(G)=P(A) P(G)
\end{aligned}
$$

Examples of Worked BBNs

- http://tiny.cc/bn-ex
- https://www.ics.uci.edu/~rickl/courses/cs-171/[etc]/ cs-171-17-BayesianNetworks.pdf
- http://tiny.cc/bn-ex2
- http://chem-eng.utoronto.ca/~datamining/ Presentations/Bayesian_Belief_Network.pdf
- https://cw.fel.cvut.cz/wiki/_media/courses/ ae4m33rzn/bn_solved.pdf

Topics: Reasoning Under Uncertainty

- How is the world represented over time?
- Concepts: timesteps, world, observations
- Transition model captures how the world changes
- Sensor model capture what we see, given some world
- Markov assumption (first-order) makes it all tractable
- What can we do with it?
- Concepts: Filtering, predicting, smoothing, explaining

Topics: Reasoning Under Uncertainty

- How would you represent this problem as a network and set of conditional probability tables?
- The weather has a 30% chance of changing and a 70% chance of staying the same.
- If it's raining, the probability of seeing someone carrying an umbrella is 90%; if it's not raining, it's 20%.
- I saw umbrellas Monday and Tuesday, but not today. What is the most likely weather pattern for those days?

Example

$\mathrm{R}_{\mathrm{t}-1}$	$\mathrm{P}\left(\mathrm{R}_{\mathrm{t}} \mid \mathrm{R}_{\mathrm{t}-1}\right)$
t	0.7
f	0.3

Weather has a 30% chance of changing and a 70% chance of staying the same.

R_{t}	$\mathrm{P}\left(\mathrm{U}_{\mathrm{t}} \mid \mathrm{R}_{\mathrm{t}}\right)$
t	0.9
f	0.2

Topics: Utility

- How should rational agents make decisions?
- Concepts: rationality, utility functions, value functions, expected value, satisficing, preferences
- Utility is a function of world states
- Must have some preferences that pertain to perceived needs or wants

Topics: Decision Theory

- What is the expected utility of an action?
- Broadly: its probability times its value
- The sum of that for all possible outcomes
- Maximum Expected Utility principle

Topics: Pareto Optimality

- An outcome is Pareto optimal if there is no other outcome that all players would prefer.
- S is a Pareto-optimal solution iff
- $\forall s^{\prime}\left(\exists x \mathrm{U}_{x}\left(s^{\prime}\right)>\mathrm{U}_{x}(s) \rightarrow \exists y \mathrm{U}_{y}\left(s^{\prime}\right)<\mathrm{U}_{y}(s)\right)$
- I.e., if X is better off in s^{\prime}, then some Y must be worse off

Example questions:
Which solutions are Pareto-optimal?

Which solution(s) maximize global utility (social welfare)?

Topics: Nash Equilibrium

- Occurs when each player's strategy is
 optimal, given strategies of the other players
- No player benefits by unilaterally changing strategy while others stay fixed
- Example questions:
- What strategy should you choose? Why?
- What strateg(ies) are

| B | C | Confesses |
| ---: | :---: | :---: | Denies \quad| $(0,5)$ | |
| ---: | :---: |
| Confesses | $(3,3)$ |
| Denies | $(5,0)$ | in a Nash equilibrium?

Various Reminders

- Everything in the readings is fair game.
- Look at homeworks, sample problems in lectures.
- Look at lectures' "Why?" questions.
- Slides are a good source of conceptual understanding.
- Book goes into detail and explains more deeply.

