

Bookkeeping

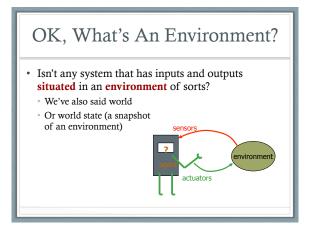
· Project teams If you aren't part of a 2-4 person team OR would like additional members, please talk to me after class

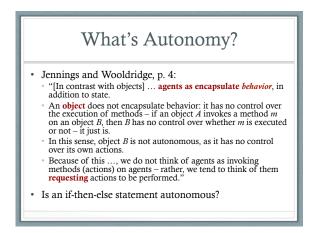
Today's Class

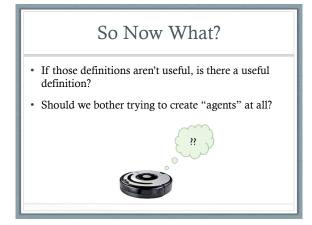
- · What's an agent?
- Multi-Agent Systems
- Cooperative multi-agent systems
- Competitive multi-agent systems Game time!
- MAS Research Directions
- Organizational structures
- Communication limitations
- · Learning in multi-agent systems

What's An Agent?

- · Weiss, p. 29 [after Wooldridge and Jennings]: "An **agent** is a computer system that is **situated** in some **environment**, and that is capable of **autonomous action** in this environment in order to meet its design objectives."
- Russell and Norvig, p. 7: "An agent is just something that perceives and acts."
- Rosenschein and Zlotkin, p. 4:
- "The more complex the considerations that [a] machine takes into account, the more justified we are in considering our computer an 'agent,' who acts as our surrogate in an automated encounter." [emph. mine]

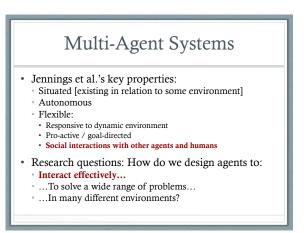

What's An Agent? II


WHAT'S AN AGENT?


Ferber, p. 9:

- "An agent is a physical or virtual entity [which] a) Is capable of acting in an **environment**,
 - b) Can communicate directly with other agents,
 - c) Is driven by a set of tendencies...,
 - d) Possesses resources of its own,
 - e) Is capable of **perceiving** its environment...,
 - f) Has only a partial representation of this environment..., g) Possesses skills and can offer services,
 - h) May be able to **reproduce** itself,

 - i) Whose behavior tends towards satisfying its objectives, taking account of the resources and skills available to it and depending on its perception, its representations and the communications it receives."



Aspects of MAS

- Cooperative vs. Interaction protocols and languages
- Homogeneous vs. Organizational structure
- Macro vs. micro
- structure
 Mechanism design / market economics
- Learning

Topics in MAS

- Cooperative MAS:
 - Distributed problem solving: Less autonomy
 (At least in a certain sense)
 - Distributed planning: Models for cooperation and teamwork
- Competitive or self-interested MAS:
- Distributed rationality: Voting, auctions
- Negotiation: Contract nets
- Strictly adversarial interactions \leftarrow least complex

Some Cooperative MAS Domains

- · Distributed sensor network establishment
- Distributed vehicle monitoring
- Distributed delivery

Distributed Sensing & Monitoring

· Distributed sensing:

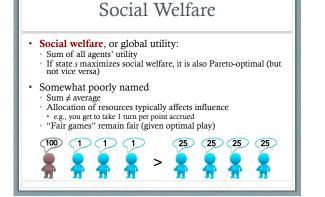
- Distributed sensor network establishment:
- Locate sensors to provide the best coverage
- Centralized vs. distributed solutions
- Track vehicle/other movements using multiple sensors
- Distributed vehicle monitoring:
 - Control sensors and integrate results to track vehicles as they move from one sensor's "region" to another's
 - Centralized vs. distributed solutions

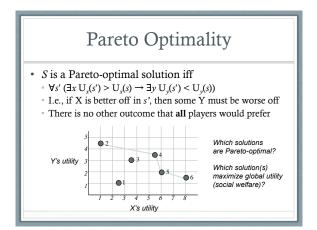
Distributed Delivery

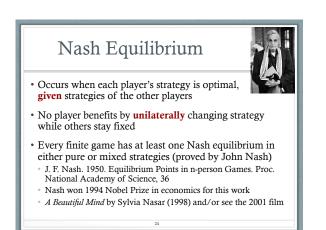
- Logistics problem: move goods from original locations to destination locations using multiple delivery resources (agents)
- Dynamic, partially accessible, nondeterministic environment (goals, situation, agent status)
- · Centralized vs. distributed solution

Competitive Multi-Agent Systems

Games and Game Theory


- Much effort to develop programs for artificial games like chess or poker, played for entertainment
- Larger issue: account for, model, and predict how agents (human or artificial) interact with other agents
- **Game theory** accounts for mixture of cooperative and competitive behavior
- · Applies to zero-sum and non-zero-sum games


Basic Ideas


- Game theory studies how strategic interactions among rational players produce outcomes with respect to the players' preferences (or utilities)
 Outcomes might not have been intended
- Offers a general theory of strategic behavior
- · Generally depicted in mathematical form
- Plays important role in economics, decision theory and multi-agent systems

- An outcome is Pareto optimal if there is no other outcome that all players would prefer.
 - "a state ... from which it is impossible to [change] so as to make any one individual better off without making at least one individual worse off." – Wikipedia (simplified)
- S is a Pareto-optimal solution iff
- $\forall s' (\exists x U_x(s') > U_x(s) \rightarrow \exists y U_y(s') < U_y(s))$
- I.e., if X is better off in s', then some Y must be worse off

Stability

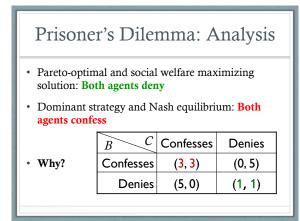
- · If an agent can always maximize its own utility with a particular strategy (regardless of other agents' behavior) then that strategy is dominant
 - Strategy s dominates s' iff:
 - Outcome (for player *p*) of *s* is better than the outcome of s' in every case
- A set of agent strategies is in Nash equilibrium if each agent's strategy S_i is locally optimal, given the other agents' strategies
 - No agent has an incentive to change strategies
 - Hence this set of strategies is locally stable

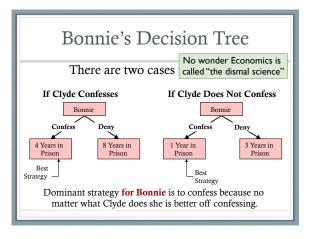
Prisoner's Dilemma

- · Famous example of game theory
- Will two prisoners cooperate to minimize total loss of liberty or will one of them betray the other so as to go free?
- Strategies must be undertaken without full knowledge of what other players will do
- Players adopt dominant strategies, but they don't necessarily lead to the best outcome
- Rational behavior leads to a situation where everyone is worse off

Bonnie & Clyde · Bonnie and Clyde are arrested. They're questioned separately, unable to communicate. They know the deal: • If both proclaim innocence (deny involvement), they will both get short sentences If one confesses and the other doesn't, the confessor gets a light sentence and the other gets a heavy sentence If both confess, both get moderate sentences What should Bonnie do?

· What should Clyde do?




Group Work: Prisoner's Dilemma

<Bonnie's sentence, Clyde's sentence>

BC	Confesses	Denies
Confesses	(3, 3)	(0, 5)
Denies	(5, 0)	(1, 1)

- Play 1 round what are results?
- Switch partners
- · Play 5 rounds, keeping track of total years

Iterated Prisoner's Dilemma

- · Rational players should always defect in a PD situation
- · In real situations, people don't always do this
- Why not? Possible explanations:
- People aren't rational
- Morality
- Social pressure
- · Fear of consequences
- · Evolution of species-favoring genes
- Which make sense? How can we formalize?

Iterated PD

- Key idea: We often play more than one "game" with someone
- Players have complete knowledge of past games, including their choices and other players' choices
- Can choose based on whether they've been cooperative in past
- Simulation was first done by Robert Axelrod (Michigan) where programs played in a round-robin tournament
 (DD=5,CC=3,DD=1,DC=0)
- · The simplest program won!

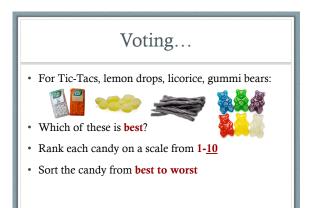
Distributed Rationality

How can we encourage/coax/force selfinterested agents to play *fairly* in the sandbox?

- Voting: Everybody's opinion counts (but how much?)
- Auctions: Everybody gets a chance to earn value (but fairly?)
- · Contract nets: Work goes to the highest bidder
- Issues:

• Global utility • Fairness

- Stability
- Cheating and lying


Voting

- How should we **rank** the possible outcomes, given individual agents' preferences (votes)?
- Six desirable properties which can't all be satisfied:
 Every combination of votes should lead to a ranking
 - Every pair of outcomes should have a relative ranking
 - The ranking should be asymmetric and transitive
 - The ranking should be Pareto-optimal
 - Irrelevant alternatives shouldn't influence the outcome
 - · Share the wealth: No agent should always get their way

Voting protocols

• Plurality voting:

- · The outcome with the highest number of votes wins
- Irrelevant alternatives can change the outcome (e.g., Gary Johnson)
- Borda voting:
 - Agents' rankings are used as weights, which are summed across all agents
 - Agents can "spend" high rankings on losing choices, making their remaining votes less influential
- · Binary voting:
 - · Agents rank sequential pairs of choices ("elimination voting")
 - · Irrelevant alternatives can still change the outcome
 - Very order-dependent

Voting game

Discuss... did we achieve global social welfare? Fairness? Were there interesting

- Using *plurality (1/0) voting* to select a winner: The winner is the candidate with the most votes
 The naive strategy is to vote for your top choice – is that best?
- Using the *range votes* directly to select a winner:
 Add the range votes

Different people use different "widths/ranges" – how does that change it?

- Using Borda (1..k) voting:
 - Everybody ranks the k candidates that are running in that round
- Your top choice receives *k* votes; your second choice, *k-1*, etc.
- The winner is the candidate with the most votes Borda voting is often used in combination with a runoff
- Eliminate the lowest-ranked candidates and try again how does that change it?

Auctions

- · Many different types and protocols
- All of the common protocols yield Pareto-optimal outcomes
- **But**... bidders can agree to artificially lower prices in order to cheat the auctioneer
- What about when the colluders cheat each other? • (Now that's *really* not playing nicely in the sandbox!)

Learning in MAS

- Emerging field: How can teams of agents learn? Individually? As groups?
- Distributed Reinforcement Learning (next slide)
- · Genetic algorithms:
 - · Evolve a society of "fittest" agents
 - In practice: a cool idea that is very hard to make work
- Strategy learning:
- In market environments, learn other agents' strategies

MAS RL

• Distributed Reinforcement Learning

- Behave as an individual
- Receive team feedback
- Learn to individually contribute to team performance
- How?
 - Iteratively allocate "credit" for group performance to individual decisions.

Conclusions and Directions

- Different types of "multi-agent systems":
 - · Cooperative vs. competitive
 - · Heterogeneous vs. homogeneous
 - Micro vs. macro
- Lots of interesting/open research directions:
 - Effective cooperation strategies"Fair" coordination strategies and protocols
 - Learning in MAS
 - Resource-limited MAS (communication, ...)
- · Economics: agents are human players with resources