

Bookkeeping

- HW 3 out @ 11:59pm
- Questions about HW 2

Today's Class

- Bayesian networks
- Network structure
- Conditional probability tables
- Conditional independence
- Inference in Bayesian networks
- Exact inference
- Approximate inference

Review: Conditioning

What does it mean for A and B to be conditionally independent given \mathbf{C} ?

- A and B don't affect each other if C is known
- $P(\mathrm{~A} \wedge \mathrm{~B} \mid \mathrm{C})=P(\mathrm{~A} \mid \mathrm{C}) P(\mathrm{~B} \mid \mathrm{C})$

Review: Bayes' Rule

What is Bayes' Rule?

$$
P\left(H_{i} \mid E_{j}\right)=\frac{P\left(E_{j} \mid H_{i}\right) P\left(H_{i}\right)}{P\left(E_{j}\right)}
$$

What's it useful for?

> - Diagnosis

- Effect is perceived, want to know (probability of) cause

$$
P(\text { cause } \mid \text { effect })=\frac{P(\text { effect } \mid \text { cause }) P(\text { cause })}{P(\text { effect })}
$$

Review: Independence
What does it mean for A and B to be independent?

- $\mathrm{P}(\mathrm{A}) \Perp \mathrm{P}(\mathrm{B})$
- A and B do not affect each other's probability
- $P(A \wedge B)=P(A) P(B)$

Review: Joint Probability

What is the joint probability of A and B ?

- $P(\mathrm{~A}, \mathrm{~B})$
- The probability of any pair of legal assignments. - Generalizing to >2, of course
- Booleans: expressed as a matrix/table

	alarm	ᄀalarm				
burglary	0.09	0.01				
ᄀburglary	0.1	0.8		\mathbf{A}	\mathbf{B}	
:---:	:---:	:---:	:---			
T	T	0.09				
T	F	0.1				
F	T	0.01				
F	F	0.8				

- Continuous domains: probability functions

Cymhia Matusede-UMBC CMSC 671 9

Bayes' Nets: Big Picture

- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- A type of graphical models
- We describe how variables interact locally
- Local interactions chain together to give global, indirect interactions

Example: Insurance

Example: Toothache

- Random variables:
- How's the weather?
- Do you have a toothache?
- Does the dentists' probe catch when she pokes your tooth? - Do you have a cavity?

Graphical Model Notation

- Nodes: variables (with domains)
- Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
- Indicate "direct influence" between
- Formally: encode conditional independence
- Toothache and Catch are conditionally independent, given Cavity
- For now: imagine that arrows mean causation - (in general, they don't!)

Bayesian Belief Networks (BNs)

- Let's formalize the semantics of a BN
- A set of nodes, one per variable X
- A directed arc between each con-influential node
- $X \rightarrow Y$ means X has an influence on Y
- A directed, acyclic graph

Cynthia Matuseek - UMBC CMSC 671 $16 \quad$ Slides derived from Matt E. Taylor, WSU

Conditional Probability Tables

- For $X_{i}, \mathrm{CPD} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$ quantifies effect of parents on X_{i}
- Parameters are probabilities in conditional probability tables (CPTs):

Bayesian Belief Networks (BNs)

- Definition: BN = (DAG, CPD)
- DAG: directed acyclic graph (BN's structure)
- Nodes: random variables
- Typically binary or discrete
- Methods exist for continuous variables
- Arcs: indicate probabilistic dependencies between nodes - Lack of link signifies conditional independence
- CPD: conditional probability distribution (BN's parameters)
- Conditional probabilities at each node, usually stored as a table (conditional probability table, or CPT)
- Conditional Probability Distribution for C given B
- If you have a Boolean variable with k Boolean parents, this table has $2^{\mathrm{k}+1}$ probabilities

Bayesian Belief Networks (BNs)

- Definition: BN = (DAG, CPD)

DAG: directed acyclic graph (BN's structure)

- Nodes: random variables

Typically binary or discrete
Methods exist for continuous variables

- Arcs: indicate probabilistic dependencies between nodes - Lack of link signifies conditional independence!
- CPD: conditional probability distribution (the BN's parameters)
- Conditional probabilities at each node, usually stored as a table (conditional probability table, or CPT)

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions as a product of local conditional distributions.
- To see probability of a full assignment, multiply all the relevant conditionals together:

- This lets us reconstruct any entry of the full joint

OCynthia Matuseek - UMBC CMSC 671	25	Slides derived from Matt E. Taylor, WSU

Conditional Independence and Chaining

- Conditional independence assumption: $P\left(x_{i} \mid \pi_{i}, q\right)=P\left(x_{i} \mid \pi_{i}\right)$ \boldsymbol{q} is any set of variables (nodes) other than \boldsymbol{x}_{i} and its successors
π_{i} blocks influence of other nodes on x_{i} and its successors
- That is, \boldsymbol{q} influences x_{i} only through variables in π_{i})

$$
\mathrm{P}\left(\alpha_{\mathrm{n}} \mid \alpha_{1} \wedge \cdots \wedge \alpha_{\mathrm{n}-1}\right)
$$

$$
=\prod_{i=1 . . n} P\left(\alpha_{i} \mid \alpha_{1} \wedge \cdots \wedge \alpha_{i-1}\right)
$$

With this assumption, complete joint probability distribution of all variables in the network can be represented by (recovered from) local CPDs by chaining these CPDs:

$$
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \pi_{i}\right)
$$

The Chain Rule

- $\mathrm{P}\left(\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{\mathrm{n}}\right)=\mathrm{P}\left(\alpha_{1}\right) \times$
$\mathrm{P}\left(\alpha_{2} \mid \alpha_{1}\right) \times$

$$
\mathrm{P}\left(\alpha_{3} \mid \alpha_{1} \wedge \alpha_{2}\right) \times \ldots \times
$$

$$
=P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \pi_{i}\right)
$$

$P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \pi_{i}\right)$

[^0]

Chaining: Example

Computing the joint probability for all variables is easy:
P(a, b, c, d, e)
$=\mathrm{P}(\mathrm{e} \mid \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}) \mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}) \quad$ by the product rule
$=\mathrm{P}(\mathrm{e} \mid \mathrm{c}) \mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}) \quad$ by cond. indep. assumption
$=\mathrm{P}(\mathrm{e} \mid \mathrm{c}) \mathrm{P}(\mathrm{d} \mid \mathrm{a}, \boldsymbol{b}, \boldsymbol{c}) \mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$
$=P(e \mid c) P(d \mid b, c) P(c \mid a, b) P(a, b)$
$=P(e \mid c) P(d \mid b, c) P(c \mid a) P(b \mid a) P(a)$

Topological Semantics

- A node is conditionally independent of its nondescendants given its parents
- A node is conditionally independent of all other nodes in the network given its parents, children, and children's parents (also known as its Markov blanket)
- The method called d-separation can be applied to decide whether a set of nodes X is independent of another set Y, given a third set Z

Independence and Causal Chains

- Important question about a BN :

Cynthia Matuszek-UMBC CMSC 671 30

Two More Main Patterns

- Common Cause:
- Y cause X and Y causes Z
- Are X and Z independent?
- Are X and Z independent given Y ?
- Common Effect:
- Two causes of one effect
- Are X and Z independent? (yes)
- Are X and Z independent given Y ? \rightarrow No!
Observing an effect "activates" influence between possible causes.

Slides derived from Matt E. Taylor, WSU

- Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter example
- Question: are X and Z necessarily independent?
- No. (E.g., low pressure causes rain, which causes traffic)
- X can influence Z, Z can influence X (via Y)
- This configuration is a "causal chain"

OCynthia Matusek - UMBC CMSC 671 31 Slides derived from Matt E. Taylor, WSU

Inference Tasks

- Simple queries: Compute posterior marginal $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{E}=\mathrm{e}\right)$
- E.g., $\mathrm{P}($ NoGas | Gauge=empty, Lights=on, Starts=false)
- Conjunctive queries:
$P\left(X_{i}, X_{j} \mid E=e\right)=P\left(X_{i} \mid e=e\right) P\left(X_{j} \mid X_{i}, E=e\right)$
- Optimal decisions:
- Decision networks include utility information

Probabilistic inference gives P (outcome | action, evidence)

Approaches to Inference

Direct Inference with BNs

- Instead of computing the joint, suppose we just want the probability for one variable
- Exact methods of computation:
- Enumeration
- Variable elimination
- Join trees: get the probabilities associated with every query variable

Inference by Enumeration

- Add all of the terms (atomic event probabilities) from the full joint distribution
- If \mathbf{E} are the evidence (observed) variables and \mathbf{Y} are the other (unobserved) variables, then: $P(\mathbf{X} \mid \mathbf{e})=\alpha P(\mathbf{X}, \mathbf{E})=\alpha \sum P(\mathbf{X}, \mathbf{E}, \mathbf{Y})$
- Each $\mathrm{P}(\mathrm{X}, \mathbf{E}, \mathbf{Y})$ term can be computed using the chain rule
- Computationally expensive!

Cynthia Matuszek-UMBC CMSC 671 37
OCMmbla Mawsek- UMBC CNSC 6TI

Example 1: Enumeration

- Recipe:
- State the marginal probabilities you need
- Figure out ALL the atomic probabilities you need
- Calculate and combine them
- Example:
- $\mathrm{P}(+\mathrm{b} \mid+\mathrm{j},+\mathrm{m})=$
$\frac{\mathrm{P}(+\mathrm{b},+\mathrm{j},+\mathrm{m})}{\mathrm{P}(+\mathrm{j},+\mathrm{m})}$

Cynthia Matuzzek-UMBC CMSC 671 39 Slides derived from Matt E. Taylor, WSU; Russelle Norvig

Example 1 cont'd

$$
\begin{aligned}
& P(+b,+j,+m)= \\
& P(+b) P(+e) P(+a \mid+b,+e) P(+j \mid+a) P(+m \mid+a)+ \\
& P(+b) P(+e) P(-a \mid+b,+e) P(+j \mid-a) P(+m \mid-a)+ \\
& P(+b) P(-e) P(+a \mid+b,-e) P(+j \mid+a) P(+m \mid+a)+ \\
& P(+b) P(-e) P(-a \mid+b,-e) P(+j \mid-a) P(+m \mid-a) \\
& \mathrm{P}(+\mathrm{m} \mid+\mathrm{b},+\mathrm{e}) ?
\end{aligned}
$$

Example 2: Enumeration

- $P\left(\mathrm{x}_{\mathrm{i}}\right)=\Sigma_{\pi \mathrm{i}} P\left(\mathrm{x}_{\mathrm{i}} \mid \pi_{\mathrm{i}}\right) P\left(\pi_{\mathrm{i}}\right)$
- Suppose we want $P(\mathrm{D}=$ true $)$,
- only E is given as true
- $\mathrm{P}(\mathrm{d} \mid \mathrm{e})=\alpha \Sigma_{\mathrm{ABC}} \mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e})$

$=\alpha \Sigma_{A B C} \mathrm{P}(\mathrm{a}) \mathrm{P}(\mathrm{b} \mid \mathrm{a}) \mathrm{P}(\mathrm{c} \mid \mathrm{a}) \mathrm{P}(\mathrm{d} \mid \mathrm{b}, \mathrm{c}) \mathrm{P}(\mathrm{e} \mid \mathrm{c})$
- With simple iteration, that's a lot of repetition!

P(e|c) has to be recomputed every time we iterate over $\mathrm{C}=$ true
Cynthia Matusek-UMBC CMSC 671 41

Variable Elimination Approach
General idea: - Write query in the form $P\left(X_{n}, \varphi\right)=\sum \sum \sum \prod_{i}^{P(x, \mid p a)}$ Note that there is no α term here conditional probability - Iteratively \qquad Perform innermost sum, getting a new term Insert the new term into the product

Computing Factors

Variable Elimination

- Basically just enumeration, but with caching of local calculations
- Linear for polytrees (singly connected BNs)
- Potentially exponential for multiply connected BNs \Rightarrow Exact inference in Bayesian networks is NP-hard!
- Join tree algorithms are an extension of variable elimination methods that compute posterior probabilities for all nodes in a BN simultaneously
\qquad

A More Complex Example

- And what is "evidence?"
- Variables whose value has been observed
- Suppose we are given evidence: $V=t, S=f, D=t$
- We want to compute $P(L, V=t, S=f, D=t)$

Dealing with Evidence
 - We start by writing the factors:

$P(v) P(s) P(t \mid v) P(l \mid s) P(b \mid s) P(a \mid t, l) P(x \mid a) P(d \mid a, b)$

- Since we know that $V=t$, we don't need to eliminate V
- Instead, we can replace the factors $P(V)$ and $P(T / V)$ with

$$
f_{P(V)}=P(V=t) \quad f_{p(T V)}(T)=P(T \mid V=t)
$$

- These "select" appropriate parts of original factors given evidence
- Note that $f_{P(V)}$ is a constant, so does not appear in elimination of other variables

Dealing with Evidence

- Given evidence $V=t, S=f, D=t$, we want to compute $P(L, V=t, S=f, D=t)$
- Initial factors, after setting evidence:

$$
f_{P_{(v)}} f_{P(s)} f_{P_{(l \mid v)}}(t) f_{P(l \mid s)}(l) f_{P(b b)}(b) P(a \mid t, l) \underline{P(x \mid a)} f_{P(d a, b)}(a, b)
$$

- Eliminating x, we get
$f_{P(v)} f_{P(s))} f_{P(t \mid v)}(t) f_{P(l l s)}(l) f_{P(b l s)}(b) \underline{P(a \mid t, l)} f_{x}(a) f_{P(d a, b)}(a, b)$

Variable Elimination Algorithm

- Let $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}$ be an ordering on the non-query variables
- For $\mathrm{i}=\mathrm{m}, \ldots, 1 \sum_{X_{1}} \sum_{X_{2}} \ldots \sum_{X_{m}} \prod_{j} P\left(X_{j} \mid \operatorname{Parents}\left(X_{j}\right)\right)$
- Eliminating t, we ge
$f_{P(v)} f_{P(s)} f_{P(l \mid s)}(l) f_{P(b l s)}(b) f_{t}(a, l) f_{x}(a) f_{P(d a l a))}(a, b)$
- In the summation for X_{i}, leave only factors mentioning X_{i}
- Multiply the factors, getting a factor that contains a number for each value of the variables mentioned, including X_{i}
- Eliminating a, we get
$f_{P(\nu)} f_{P(s)} f_{P(l(s)}(l) f_{P(b l s)}(b) f_{a}(b, l)$
- Sum out X_{i}, getting a factor f that contains a number for each value of the variables mentioned, not including X_{i}
- Eliminating b, we get
$f_{\left.P_{(v)}\right)} f_{P(S)} f_{P(I) s)}(l) f_{b}(l)$

Dealing with Evidence

- So now..

Given evidence $V=t, S=f, D=t$

- Compute $P(L, V=t, S=f, D=t)$

Initial factors, after setting evidence:
$f_{P(v)} f_{P(s)} f_{P(t \mid v)}(t) f_{P(l \mid s)}(l) f_{P(b l s)}(b) P(a \mid t, l) P(x \mid a) f_{P(d a, b)}(a, b)$

- Replace the multiplied factor in the summation

Summary
- Bayes nets - Structure - Parameters - Conditional independence - Chaining
Sumha Maneek- UnBC Cusc orl 62

[^0]: Cynthia Matusek-UMBC CMSC 671 artint. info/html/ ArtInt_143. html

