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Bayes Nets 
AI Class 10 (Ch. 14.1–14.4.2; skim 14.3) 

Based on slides by Dr. Marie desJardin. Some material also adapted from slides by Matt E. Taylor @ WSU, Lise 
Getoor @ UCSC, Dr. P. Matuszek @ Villanova University, and Weng-Keen Wong at OSU. Based in part on  

www.csc.calpoly.edu/~fkurfess/Courses/CSC-481/W02/Slides/Uncertainty.ppt .  

Weather Cavity

Toothache Catch
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Bookkeeping 

•  HW 3 out @ 11:59pm 

•  Questions about HW 2 
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Today’s Class 

•  Bayesian networks 
•  Network structure 

•  Conditional probability tables 

•  Conditional independence 

•  Inference in Bayesian networks 
•  Exact inference 

•  Approximate inference 
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Review: Independence 

What does it mean for A and B to be independent? 

•  P(A) ⫫ P(B)

•  A and B do not affect each other’s probability 

•  P(A ∧ B) = P(A) P(B) 

4 

© Cynthia Matuszek – UMBC CMSC 671 

Review: Conditioning 

What does it mean for A and B to be conditionally 
independent given C? 

•  A and B don’t affect each other if C is known 

•  P(A ∧ B | C) = P(A | C) P(B | C)
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Review: Bayes’ Rule 

What is Bayes’ Rule? 

What’s it useful for? 
•  Diagnosis 

•  Effect is perceived, want to know (probability of) cause 
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P(Hi | Ej ) =
P(Ej |Hi )P(Hi )

P(Ej )

P(cause | effect) = P(effect | cause)P(cause)
P(effect)

R&N, 495–496 
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Review: Joint Probability 

What is the joint probability of  A and B? 

•  P(A,B)

•  The probability of  any pair of  legal assignments. 
•  Generalizing to > 2, of  course 

•  Booleans: expressed as a matrix/table 

 

•  Continuous domains: probability functions 

A B 

T T 0.09 

T F 0.1 

F T 0.01 

F F 0.8 

alarm ¬ alarm
burglary 0.09 0.01

¬ burglary 0.1 0.8
≍ 
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Bayes’ Nets: Big Picture 

•  Problems with full joint distribution tables as our 
probabilistic models: 
•  Joint gets way too big to represent explicitly 
•  Unless there are only a few variables 

•  Hard to learn (estimate) anything empirically about more 
than a few variables at a time 
•  Why? 

10 

  A ¬A 
E ¬E E ¬E 

B 0.01 0.08 0.001 0.009 
¬B 0.01 0.09 0.01 0.79 

Slides derived from Matt E. Taylor, WSU 
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Bayes’ Nets: Big Picture 

•  Bayes’ nets: a technique for describing complex 
joint distributions (models) using simple, local 
distributions (conditional probabilities) 
•  A type of  graphical models 

•  We describe how variables interact locally  
•  Local interactions chain together to give global, indirect 

interactions 
Weather Cavity

Toothache Catch
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Example: Insurance 

Slides derived from Matt E. Taylor, WSU 12 
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Example: Car 
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Example: Toothache 

•  Random variables: 
•  How’s the weather? 

•  Do you have a toothache? 

•  Does the dentists’ probe catch when she pokes your tooth? 

•  Do you have a cavity? 

14 Slides derived from Matt E. Taylor, WSU 

Weather Cavity

Toothache Catch
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Graphical Model Notation  

•  Nodes: variables (with domains)  

•  Can be assigned (observed) or unassigned (unobserved)  

•  Arcs: interactions  
•  Indicate “direct influence” between  

•  Formally: encode conditional independence 
•  Toothache and Catch are conditionally independent, given Cavity 

•  For now: imagine that  
arrows mean causation  
•  (in general, they don’t!)  

Slides derived from Matt E. Taylor, WSU 

Weather Cavity

Toothache Catch
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Bayesian Belief  Networks (BNs) 

•  Let’s formalize the semantics of  a BN  
•  A set of  nodes, one per variable X  

•  A directed arc between each con-influential node 
•  X àY means X has an influence on Y 

•  A directed, acyclic graph  

Slides derived from Matt E. Taylor, WSU 16 
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Bayesian Belief  Networks (BNs) 

•  Each node X has a conditional  
probability distribution: 

•  A collection of  distributions over X 
•  One for each combination of  parents’ values 

•  Quantifies the effects of  the parents on a node 

•  CPT: conditional probability table 
•  Description of  a noisy “causal” process 

Slides derived from Matt E. Taylor, WSU 17 

P(Xi | Parents(Xi)) 

Conditional Probability Tables 
•  For Xi, CPD P(Xi | Parents(Xi)) quantifies effect of  parents on Xi 

•  Parameters are probabilities in conditional probability tables (CPTs): 

A P(A) 
false 0.6 

true 0.4 

A B P(B|A) 
false false 0.01 

false true 0.99 

true false 0.7 

true true 0.3 

B C P(C|B) 
false false 0.4 

false true 0.6 

true false 0.9 

true true 0.1 

B D P(D|B) 
false false 0.02 

false true 0.98 

true false 0.05 

true true 0.95 

A 

B 

C D 

Example from web.engr.oregonstate.edu/~wong/slides/BayesianNetworksTutorial.ppt 
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For a given combination of  
values of  the parents (B in 
this example), the entries for 
P(C=true | B) and  
P(C=false | B) must sum to 1 
   Example: 
P(C=true | B=false) + 
P(C=false |B=false ) = 1 

Example from web.engr.oregonstate.edu/~wong/slides/BayesianNetworksTutorial.ppt 

CPTs cont’d 

•  Conditional Probability Distribution for C given B 

•  If  you have a Boolean variable with k Boolean 
parents, this table has 2k+1 probabilities 

B C P(C|B) 
false false 0.4 

false true 0.6 

true false 0.9 

true true 0.1 

A 

B 

C D 
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Bayesian Belief  Networks (BNs) 

•  Definition: BN = (DAG, CPD)  
•  DAG: directed acyclic graph (BN’s structure) 
•  Nodes: random variables  
•  Typically binary or discrete 
•  Methods exist for continuous variables 
•  Arcs: indicate probabilistic dependencies between nodes 
•  Lack of  link signifies conditional independence 

•  CPD: conditional probability distribution (BN’s parameters) 
•  Conditional probabilities at each node, usually stored as a table 

(conditional probability table, or CPT) 

21 
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Bayesian Belief  Networks (BNs) 

22 

•  Definition: BN = (DAG, CPD)  
•  DAG: directed acyclic graph (BN’s structure) 
•  Nodes: random variables  
•  Typically binary or discrete 
•  Methods exist for continuous variables 

•  Arcs: indicate probabilistic dependencies between nodes 
•  Lack of  link signifies conditional independence! 

•  CPD: conditional probability distribution (the BN’s 
parameters) 
•  Conditional probabilities at each node, usually stored as a table 

(conditional probability table, or CPT) 
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Bayesian Belief  Networks (BNs) 

•  Definition: BN = (DAG, CPD)  
•  DAG: directed acyclic graph (BN’s structure) 
•  CPD: conditional probability distribution (BN’s parameters) 
•  Conditional probabilities at each node, usually stored as a table 

(conditional probability table, or CPT) 

 
 
•  Root nodes are a special case 
•  No parents, so use priors in CPD: 

P(xi |π i )  where π i  is the set of all parent nodes of xi

π i =∅,  so P(xi |π i ) = P(xi )

23 
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Example BN 

a 

b                    c 

d                 e  

P(C|A) = 0.2       
P(C|¬A) = 0.005 P(B|A) = 0.3       

P(B|¬A) = 0.001 

P(A) = 0.001 

P(D|B,C) = 0.1       
P(D|B,¬C) = 0.01 
P(D|¬B,C) = 0.01     
P(D|¬B,¬C) = 0.00001 

P(E|C) = 0.4       
P(E|¬C) = 0.002 

We only specify P(A) etc., not P(¬A), since they have to sum to one 
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Probabilities in BNs 

•  Bayes’ nets implicitly encode joint distributions as a 
product of local conditional distributions.  

•  To see probability of  a full assignment, multiply all the 
relevant conditionals together:  

•  Example: 

        P(+cavity, +catch, ¬toothache) = ?

•  This lets us reconstruct any entry of  the full joint  

25 

P(x1, x2,...xn ) = P(xi | parents(Xi )
i=1
∏ )

n

Cavity

Toothache Catch

Slides derived from Matt E. Taylor, WSU 
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Conditional Independence 
and Chaining 

•  Conditional independence assumption:  
•  q is any set of variables (nodes)  

other than xi and its successors 

•  πi blocks influence of other nodes  
on xi and its successors  
•  That is, q influences xi only through 

variables in πi) 

•  With this assumption, complete joint probability distribution 
of all variables in the network can be represented by 
(recovered from) local CPDs by chaining these CPDs: 

P(x1,..., xn ) =Πi=1
n P(xi |π i )

P(xi |π i,q) = P(xi |π i )

ix 

iπ 
q

26 © Cynthia Matuszek – UMBC CMSC 671 

The Chain Rule 

•  P(α1∧α2∧...∧αn) = P(α1) × �
P(α2 | α1) × �
P(α3 | α1∧α2) × ... ×�
P(αn | α1∧···∧αn-1) �

�
      = ∏i=1..n P(αi | α1∧···∧αi-1)�

�
= 

27 

P(x1,..., xn ) =Πi=1
n P(xi |π i )

artint.info/html/ArtInt_143.html 
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The Chain Rule 

e.g,  

•  Decomposition:  

P(Traffic, Rain, Umbrella) =�
      P(Rain) P(Traffic | Rain) P(Umbrella | Rain, Traffic)

•  With assumption of  conditional independence:  

P(Traffic, Rain, Umbrella) =�
      P(Rain) P(Traffic | Rain) P(Umbrella | Rain) 

•  Bayes’ nets express conditional independence 
assumptions  

28 

P(x1,..., xn ) =Πi=1
n P(xi |π i )

P(x1,..., xn ) = P(x1)P(x2 | x1)P(x3 | x1, x2)...

Slides derived from Matt E. Taylor, WSU © Cynthia Matuszek – UMBC CMSC 671 

Chaining: Example 

Computing the joint probability for all variables is easy: 

P(a, b, c, d, e)  
 =  P(e | a, b, c, d) P(a, b, c, d)         by the product rule 
 =  P(e | c) P(a, b, c, d)        by cond. indep. assumption 
 =  P(e | c) P(d | a, b, c) P(a, b, c)  
 =  P(e | c) P(d | b, c) P(c | a, b) P(a, b) 
 =  P(e | c) P(d | b, c) P(c | a) P(b | a) P(a) 

a 

b                    c 

d                 e  

29 
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Topological Semantics 

•  A node is conditionally independent of  its non-
descendants given its parents 

•  A node is conditionally independent of  all other 
nodes in the network given its parents, children, and 
children’s parents (also known as its Markov 
blanket) 

•  The method called d-separation can be applied to 
decide whether a set of  nodes X is independent of  
another set Y, given a third set Z 
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Independence and Causal Chains 

•  Important question about a BN: 
•  Are two nodes independent given certain evidence? 

•  If  yes, can prove using algebra (tedious in general) 

•  If  no, can prove with a counter example 

•  Question: are X and Z necessarily independent?  
•  No. (E.g., low pressure causes rain, which causes 

traffic)  

•  X can influence Z, Z can influence X (via Y) 

•  This configuration is a “causal chain”  

31 Slides derived from Matt E. Taylor, WSU 

© Cynthia Matuszek – UMBC CMSC 671 

Two More Main Patterns 

•  Common Cause: 
•  Y cause X and Y causes Z 
•  Are X and Z independent? 
•  Are X and Z independent given Y? 

•  Common Effect: 
•  Two causes of  one effect 
•  Are X and Z independent? (yes) 
•  Are X and Z independent given Y? 
→ No! 
•  Observing an effect “activates” influence 

between possible causes. 

32 Slides derived from Matt E. Taylor, WSU 
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Chapter 14.4.1-14.4.2 

Inference in Bayesian 
Networks 

Some material borrowed from Lise Getoor 34 
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Inference Tasks 

•  Simple queries: Compute posterior marginal P(Xi | E=e) 
•  E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false) 

•  Conjunctive queries:  
•  P(Xi, Xj | E=e) = P(Xi | e=e) P(Xj | Xi, E=e) 

•  Optimal decisions:  
•  Decision networks include utility information 
•  Probabilistic inference gives P(outcome | action, evidence) 

•  Value of information: Which evidence should we seek next? 

•  Sensitivity analysis: Which probability values are most critical? 

•  Explanation: Why do I need a new starter motor? 

35 

Approaches to Inference 

•  Exact inference  
•  Enumeration 

•  Belief  propagation in 
polytrees 

•  Variable elimination 
•  Clustering / join tree 

algorithms 

•  Approximate inference 
•  Stochastic simulation / 

sampling methods 

•  Markov chain Monte 
Carlo methods 

•  Genetic algorithms 

•  Neural networks 

•  Simulated annealing 

•  Mean field theory 

36 
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Direct Inference with BNs 

•  Instead of  computing the joint, suppose we just 
want the probability for one variable 

•  Exact methods of  computation: 
•  Enumeration 

•  Variable elimination 

•  Join trees: get the probabilities associated with every 
query variable 
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Inference by Enumeration 

•  Add all of  the terms (atomic event probabilities) 
from the full joint distribution 

•  If  E are the evidence (observed) variables and Y are 
the other (unobserved) variables, then: 

P(X | e) = α P(X, E) = α ∑ P(X, E, Y)

•  Each P(X, E, Y) term can be computed using the 
chain rule 

•  Computationally expensive! 

© Cynthia Matuszek – UMBC CMSC 671 

Example 1: Enumeration 

•  Recipe: 
•  State the marginal probabilities you need 

•  Figure out ALL the atomic probabilities you need 

•  Calculate and combine them  

•  Example: 
•  P(+b | +j, +m) =  

         P(+b, +j, +m) 
  P(+j, +m) 

Slides derived from Matt E. Taylor, WSU; Russell&Norvig 39 © Cynthia Matuszek – UMBC CMSC 671 

Example 1 cont’d 

40 Slides derived from Matt E. Taylor, WSU; Russell&Norvig 
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Example 2: Enumeration 

•  P(xi) = Σ πi P(xi | πi) P(πi)

•  Suppose we want P(D=true),  

•  only E is given as true 

•  P (d | e) = α ΣABCP(a, b, c, d, e)           (where α = 1/P(e)) �
           = α ΣABCP(a) P(b | a) P(c | a) P(d | b,c) P(e | c)

•  With simple iteration, that’s a lot of  repetition!  

•  P(e|c) has to be recomputed every time we iterate over C=true 

a 

b                    c 

d                 e  
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Variable Elimination 

•  Basically just enumeration, but with caching of  
local calculations 

•  Linear for polytrees (singly connected BNs) 

•  Potentially exponential for multiply connected BNs 
⇒ Exact inference in Bayesian networks is NP-hard! 

•  Join tree algorithms are an extension of  variable 
elimination methods that compute posterior 
probabilities for all nodes in a BN simultaneously 

42 
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Variable Elimination Approach 

General idea: 

•  Write query in the form 

 

•  Note that there is no α term here 
•  It’s a conjunctive probability, not a conditional probability… 

•  Iteratively 
•  Move all irrelevant terms outside of  innermost sum 
•  Perform innermost sum, getting a new term 
•  Insert the new term into the product 

P(Xn,e) = ! P(xi | pai )
i
∏

x2

∑
x3

∑
xk

∑

43 © Cynthia Matuszek – UMBC CMSC 671 

Variable Elimination: Example 

44 

RainSprinkler

Cloudy

WetGrass

∑=
c,s,r

)c(P)c|s(P)c|r(P)s,r|w(P)w(P

∑ ∑=
s,r c

)c(P)c|s(P)c|r(P)s,r|w(P

∑=
s,r

1 )s,r(f)s,r|w(P )s,r(f1

“factors”
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Computing Factors 

R S C P(R|C) P(S|C) P(C) P(R|C) P(S|C) P(C) 

T T T 

T T F 

T F T 

T F F 

F T T 

F T F 

F F T 

F F F 

R S f1(R,S) = ∑c P(R|S) P(S|C) P(C) 
T T 

T F 

F T 

F F © Cynthia Matuszek – UMBC CMSC 671 

A More Complex Example 

•  “Lungs” 
network: 

Visit to 
Asia Smoking

Lung CancerTuberculosis

Abnormality
in Chest Bronchitis

X-Ray Dyspnea

46 
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Lungs 1 
•  We want to compute P(d) 

•  Need to eliminate: v,s,x,t,l,a,b 

Initial factors: 

V S

LT

A B

X D

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

47 © Cynthia Matuszek – UMBC CMSC 671 

Lungs 2 
•  We want to compute P(d) 

•  Need to eliminate: v,s,x,t,l,a,b 

Initial factors: 

 

Eliminate: v 

Compute: 

 

•  Note: fv(t) = P(t)
•  In general, result of  elimination is not necessarily a probability term  

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

fv (t) = P(v)P(t | v)
v
∑

⇒ fv (t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

V S

LT

A B

X D

48 
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Lungs 3 
•  We want to compute P(d) 

•  Need to eliminate: s,x,t,l,a,b 

Initial factors: 

 

 

Eliminate: s 

Compute: 

 

•  Summing on s results in a factor with two arguments fs(b,l) 
•  In general, result of  elimination may be a function of  several variables 

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)
⇒ fv (t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

fs (b, l) = P(s)P(b | s)P(l | s)
s
∑

⇒ fv (t) fs (b, l)P(a | t, l)P(x | a)P(d | a,b)

V S

LT

A B

X D

49 © Cynthia Matuszek – UMBC CMSC 671 

Lungs 4 
•  We want to compute P(d) 

•  Need to eliminate: x,t,l,a,b 

Initial factors 
P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

Eliminate: x

Note: fx(a) = 1 for all values of a !!

Compute: fx (a) = P(x | a)
x
∑

⇒ fv (t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)
⇒ fv (t) fs (b, l)P(a | t, l)P(x | a)P(d | a,b)

⇒ fv (t) fs (b, l) fx (a)P(a | t, l)P(d | a,b)

V S

LT

A B

X D

50 
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Lungs 5 
•  We want to compute P(d) 

•  Need to eliminate: t,l,a,b 

Initial factors P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

Eliminate: t

Compute: ft (a, l) = fv (t)P(a | t, l)
t
∑

⇒ fv (t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

⇒ fv (t) fs (b, l)P(a | t, l)P(x | a)P(d | a,b)

⇒ fv (t) fs (b, l) fx (a)P(a | t, l)P(d | a,b)

⇒ fs (b, l) fx (a) ft (a, l)P(d | a,b)

V S

LT

A B

X D

51 © Cynthia Matuszek – UMBC CMSC 671 

Lungs 6 
•  We want to compute P(d) 

•  Need to eliminate: l,a,b 

Initial factors P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

Eliminate: l
Compute: fl (a,b) = fs (b, l) ft (a, l)

l
∑

⇒ fv (t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)
⇒ fv (t) fs (b, l)P(a | t, l)P(x | a)P(d | a,b)
⇒ fv (t) fs (b, l) fx (a)P(a | t, l)P(d | a,b)
⇒ fs (b, l) fx (a) ft (a, l)P(d | a,b)

⇒ fl (a,b) fx (a)P(d | a,b)

V S

LT

A B

X D

52 
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Lungs Finale 
•  We want to compute P(d) 

•  Need to eliminate: b 

Initial factors P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

Eliminate: a,b
Compute: fa (b,d) = fl (a,b) fx (a)p(d | a,b)

a
∑ fb(d) = fa (b,d)

b
∑

⇒ fv (t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)
⇒ fv (t) fs (b, l)P(a | t, l)P(x | a)P(d | a,b)
⇒ fv (t) fs (b, l) fx (a)P(a | t, l)P(d | a,b)

⇒ fl (a,b) fx (a)P(d | a,b)
⇒ fs (b, l) fx (a) ft (a, l)P(d | a,b)

⇒ fa (b,d)⇒ fb(d)

V S

LT

A B

X D

53 © Cynthia Matuszek – UMBC CMSC 671 

Dealing with Evidence 

•  How do we deal with evidence? 
•  And what is “evidence?” 

•  Variables whose value has been observed 

•  Suppose we are given evidence: V = t, S = f, D = t 

•  We want to compute P(L, V = t, S = f, D = t)

V S

LT

A B

X D

54 
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Dealing with Evidence  

•  We start by writing the factors: 

•  Since we know that V = t, we don’t need to eliminate V 

•  Instead, we can replace the factors P(V) and P(T|V) with 

•  These “select” appropriate parts of  original factors given 
evidence 

•  Note that fP(V) is a constant, so does not appear in 
elimination of  other variables 

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a,b)

fP(V ) = P(V = t) fp(T |V ) (T ) = P(T |V = t)

V S

LT

A B

X D
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Dealing with Evidence  

•  So now… 
•  Given evidence V = t, S = f, D = t 
•  Compute P(L, V = t, S = f, D = t )
•  Initial factors, after setting evidence: 

fP(v) fP(s) fP(t|v) (t) fP(l|s) (l) fP(b|s) (b)P(a | t, l)P(x | a) fP(d|a,b) (a,b)

V S

LT

A B

X D

56 
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•  Given evidence V = t, S = f, D = t, we want to compute P(L, V = t, S = f, D = t ) 

•  Initial factors, after setting evidence: 

•  Eliminating x, we get 

•  Eliminating t, we get 

•  Eliminating a, we get 

•  Eliminating b, we get 

V S

LT

A B

X D

Dealing with Evidence  

fP(v) fP(s) fP(l|s) (l) fP(b|s) (b) fa (b, l)

fP(v) fP(s) fP(l|s) (l) fP(b|s) (b) ft (a, l) fx (a) fP(d|a,b) (a,b)

fP(v) fP(s) fP(t|v) (t) fP(l|s) (l) fP(b|s) (b)P(a | t, l) fx (a) fP(d|a,b) (a,b)

fP(v) fP(s) fP(t|v) (t) fP(l|s) (l) fP(b|s) (b)P(a | t, l)P(x | a) fP(d|a,b) (a,b)
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Variable Elimination Algorithm 

•  Let X1,…, Xm be an ordering on the non-query variables 

•  For i = m, …, 1 

•  In the summation for Xi, leave only factors mentioning Xi 

•  Multiply the factors, getting a factor that contains a number for each 
value of  the variables mentioned, including Xi 

•  Sum out Xi, getting a factor f  that contains a number for each value 
of  the variables mentioned, not including Xi 

•  Replace the multiplied factor in the summation 

...
X2

∑
Xm

∑
X1

∑ P(Xj | Parents(Xj ))
j
∏

58 
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Exercise: Enumeration 

smart study 

prepared fair 

pass 

p(smart)=.8 p(study)=.6 

p(fair)=.9 

p(prep|…) smart ¬smart 

study .9 .7 

¬study .5 .1 

p(pass|…) 
smart ¬smart 

prep ¬prep prep ¬prep 

fair .9 .7 .7 .2 

¬fair .1 .1 .1 .1 

Query: What is the 
probability that a student 
studied, given that they 
pass the exam? 
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Exercise: Variable Elimination 

smart study 

prepared fair 

pass 

p(smart)=.8 p(study)=.6 

p(fair)=.9 

p(prep|…) smart ¬smart 

study .9 .7 

¬study .5 .1 

p(pass|…) 
smart ¬smart 

prep ¬prep prep ¬prep 

fair .9 .7 .7 .2 

¬fair .1 .1 .1 .1 

Query: What is the 
probability that a student 
is smart, given that they 
pass the exam? 
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Summary 

•  Bayes nets 
•  Structure 

•  Parameters 

•  Conditional independence 

•  Chaining 

•  BN inference 
•  Enumeration 

•  Variable elimination 

•  Sampling methods 
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