
 

CMSC​ ​671​ ​(AI),​ ​Fall​ ​2017 
Group​ ​Project​ ​Description 
Please read this carefully and start thinking about the steps involved in designing and implementing your                
player. The project requirements are subject to changes and improvements (but hopefully not too many).               
Good​ ​luck,​ ​and​ ​let​ ​the​ ​science​ ​begin! 

The​ ​Game​ ​of​ ​New​ ​Eleusis 
New Eleusis is a game of logical induction, in which the players try to work out an overarching ‘rule’                   
that defines whether a card is legal to play. It is a simulation of scientific research: The general idea is                    
that the dealer (in the role of “God” or “Nature”) thinks up a rule that governs the correct play of the                     
cards, and the other players (“Scientists”) take turns playing cards to test hypotheses, racing to see                
who​ ​can​ ​come​ ​up​ ​with​ ​a​ ​good​ ​theory​ ​about​ ​the​ ​rule.  1

For the project, you are going to write a New Eleusis player that is capable of generating hypotheses,                  
coming up with tests for those hypotheses, implementing those tests, and modifying the rule(s) until it                
is ready to declare success. Simplifications to the game include reducing the space of possible rules and                 
reducing the inter-player interaction drastically (in fact, the first phase of the project will be               
single-player). 

Project​ ​Requirements​ ​and​ ​Grading 
There are four graded components of the project: a project design (20%), your implemented system in                
two phases (30% each), and a final writeup (20%). You will be graded on the thoughtfulness and                 
clarity of your design and presentation, and not primarily on your algorithm’s performance. This is               
gives you the freedom to try a risky approach that is interesting from a design perspective but might                  
not work very well. An approach that doesn’t work very well, and is ​also naïve, trivial, or not                  
well-motivated,​ ​will​ ​not​ ​receive​ ​a​ ​good​ ​grade. 

Don’t just hack something together—this is an AI class! You should think about the strategies you want                 
to implement; what AI methods would be appropriate for such strategies; and how those AI methods                
can​ ​be​ ​adapted​ ​for​ ​this​ ​purpose. 

Project​ ​Design​ ​(20%) 
You must submit a project design via Blackboard. Only one project design should be submitted per                
group, and all members should have input into the project design. (Remember, submitting something              
with someone’s name on it when they did not in fact work on it is a form of academic dishonesty—and                    
besides,​ ​you’re​ ​going​ ​to​ ​be​ ​working​ ​on​ ​it;​ ​you​ ​should​ ​want​ ​input!) 

1 ​Eleusis was invented by Martin Gardner in his Mathematical Games column in the June 1959 Scientific American,                  
and subsequently modified by a number of people. The usual (unsimplified) version is fully described at                
http:​//​matuszek.org/eleusis0.html​,​ ​©​ ​David​ ​Matuszek​ ​1994. 

 



 

Your​ ​project​ ​design​ ​should​ ​contain: 
1. The​ ​team​ ​name​ ​and​ ​names​ ​of​ ​all​ ​participating​ ​team​ ​members. 

2. A short (≤ 500 words) description of your strategy for Phase I, written in clear and understandable                 
English. 
○ Your player will have to look at a sequence of cards being played, form one or more                 

hypothes(es), play cards specifically intended to test those hypotheses, refine hypothes(es),           
and​ ​ultimately​ ​express​ ​a​ ​rule​ ​that​ ​describes​ ​a​ ​hypothesis​ ​that​ ​it​ ​believes​ ​to​ ​be​ ​correct. 

3. A short (≤ 500 words) description of your strategy for Phase II, written in clear and                
understandable​ ​English. 

4. A discussion of your strategies and how you developed them (by playing the game, by reading                
articles, by talking about them, by trying things out and experimenting, …). This discussion should               
talk​ ​about​ ​Phase​ ​I​ ​​and​​ ​II​ ​players. 

5. How​ ​your​ ​implemented​ ​system​ ​draws​ ​on​ ​ideas​ ​from​ ​the​ ​AI​ ​literature. 
○ This​ ​should​ ​be​ ​focused​ ​on​ ​material​ ​and​ ​concepts​ ​that​ ​we​ ​covered​ ​in​ ​class. 
○ Cite references for the AI concepts you mention (when citing the textbook; include section              

numbers). 
○ If you like, you may also discuss methods that you would/could use but don’t expect to                

implement​ ​within​ ​the​ ​scope​ ​of​ ​the​ ​semester. 

6. Your evaluation strategy. How will you test your system to see if it’s working? How will you                 
quantify​ ​how​ ​well​ ​it​ ​works?​ ​This​ ​will​ ​be​ ​part​ ​of​ ​the​ ​final​ ​writeup. 
○ Examples of possible evaluation strategies: Have your player play against itself; play against             

human(s); work with another team to run your players against each other; come up with an                
evaluation​ ​set​ ​​before​ ​you​ ​start​ ​testing​​ ​that​ ​​demonstrably​​ ​covers​ ​a​ ​lot​ ​of​ ​the​ ​search​ ​space​ ​.  

7. A​ ​corresponding​ ​Python​ ​design: 
○ Main​ ​functions​ ​(including​ ​required​ ​functions). 
○ Expected​ ​inputs​ ​and​ ​outputs​ ​for​ ​each​ ​function. 
○ Clear,​ ​readable​ ​pseudocode​ ​for​ ​the​ ​behavior​ ​of​ ​the​ ​function. 
○ Think about what helper functions and computations you will need in order to implement your               

strategies,​ ​and​ ​have​ ​corresponding​ ​function​ ​stubs. 

It​ ​is​ ​fine​ ​(and​ ​likely)​ ​to​ ​make​ ​changes​ ​to​ ​the​ ​design​ ​after​ ​you​ ​submit​ ​this​ ​document. 

Rules​ ​and​ ​Simplifications 
As you know, New Eleusis can be difficult, partly because there are so many possible possible rules,                 
and partly because the scoring and game play are complicated. The version you will implement is very                 
simplified,​ ​so​ ​please​ ​be​ ​sure​ ​to​ ​read​ ​carefully​ ​to​ ​understand​ ​what​ ​you​ ​do​ ​and​ ​don’t​ ​have​ ​to​ ​do.  

Game​ ​play 
You ​do not need to support ​prophets​, ​sudden death​, ​playing multiple cards at once, or ​no-plays​.                
Essentially, the purpose of this project is to build a good inductive solver, not to deal with game                  

 



 

mechanics. Your player’s final score will consist of how many plays it took to figure out the rule, with                   
penalties​ ​for​ ​playing​ ​wrong​ ​cards.​ ​(See​ ​Phase​ ​I​ ​and​ ​Phase​ ​II​ ​for​ ​scoring​ ​details.) 

Legal​ ​rules 
Rules​ ​must​ ​be​ ​expressed​ ​with​ ​the​ ​functions​ ​provided​ ​in​ ​​new_eleusis.py​. 

In general, a rule decides whether a card is legal to play ‘next’ – that is, on the player’s current turn.                     
This might depend only on the card being played (e.g., “all red cards must be even, all black cards must                    
be odd”), or it may depend on previous cards (e.g., “a heart must be followed by a spade”). Rules can be                     
treated​ ​as​ ​expressions​ ​that​ ​evaluate​ ​to​ ​​True​​ ​(legal)​ ​or​ ​​False​​ ​(illegal). 

Rules​ ​can​ ​​only​ ​depend​ ​on​ ​the​ ​current​ ​card​ ​and,​ ​at​ ​most,​ ​​the​ ​two​ ​previous​ ​cards​. 

● In practice, this means you are should maintain the cards ​prev​, ​prev2 (the card before last),                
and​ ​​current​​ ​(the​ ​card​ ​you​ ​are​ ​choosing​ ​to​ ​play),​ ​and​ ​rules​ ​will​ ​only​ ​refer​ ​to​ ​those​ ​cards.  

● It​ ​is​ ​okay​ ​(and​ ​often​ ​necessary)​ ​to​ ​look​ ​at​ ​all​ ​previous​ ​plays​ ​for​ ​information. 

Card​ ​characteristics 
Rules must be expressed with the functions provided in ​new_eleusis.py​, which means they can only               
depend​ ​on​ ​card​ ​characteristics​ ​found​ ​in​ ​that​ ​file. 

● Suits​​ ​(diamond​ ​​♦​,​ ​heart​ ​​♥​,​ ​spade​ ​♠,​ ​club​ ​♣). 
● Royal​ ​card​​ ​(King,​ ​Queen,​ ​Jack)​ ​or​ ​not.  2

● Even​ ​or​ ​odd​​ ​value. 
● Numeric​​ ​value​ ​(Ace=1,​ ​Jack=11,​ ​Queen=12,​ ​King=13). 
● Higher​ ​or​ ​lower​​ ​deck​ ​value. 

A note on value. Suits in a standard playing deck are ordered, which creates a value ordering for all                   
cards. The ordering is ♣ < ​♦ < ​♥ < ​♠. This means, for example, that the king of clubs is lower ​value than                              
the​ ​two​ ​of​ ​diamonds. 

Phase​ ​I​ ​(30%) 
Your Phase I player will ​not be graded primarily based on score (although obviously, a solver that                 
doesn’t solve problems is probably not great). We will also grade based on the clarity and elegance of                  
your code, the correctness of your approach, and how well your strategy captures appropriate AI               
concepts​ ​in​ ​trying​ ​to​ ​solve​ ​the​ ​problem,​ ​as​ ​well​ ​as​ ​a​ ​short​ ​description​ ​of​ ​what​ ​you​ ​implemented. 

Your submission should not include any I/O in the required functions. Helper functions that perform               
I/O​ ​can​ ​be​ ​included​ ​but​ ​should​ ​not​ ​be​ ​called​ ​from​ ​the​ ​required​ ​functions. 

In​ ​the​ ​first​ ​phase​ ​of​ ​the​ ​project,​ ​the​ ​following​ ​simplifications​ ​will​ ​apply. 

● Your​ ​player​ ​can​ ​play​ ​any​ ​card​ ​(assume​ ​an​ ​infinite​ ​hand). 
● Your​ ​player​ ​is​ ​the​ ​only​ ​player—it​ ​is​ ​making​ ​all​ ​plays,​ ​legal​ ​and​ ​illegal. 
● The rule returned by your scientist must describe all cards played so far, which must include a                 

minimum​ ​of​ ​20​ ​plays.​ ​(See​ ​scoring,​ ​below.) 

2 ​ ​Also​ ​called​ ​“face​ ​cards.” 

 



 

● After​ ​200​ ​plays,​ ​the​ ​player​ ​must​ ​return​ ​its​ ​best​ ​guess​ ​at​ ​a​ ​rule. 

Functions 
You​ ​must​ ​implement​ ​the​ ​following​ ​functions: 

setRule(<rule-expression>)​:​ ​Set​ ​the​ ​current​ ​rule,​ ​using​ ​functions​ ​provided​ ​in​ ​​new_eleusis.py​. 

rule()​:​ ​​ ​Return​ ​the​ ​current​ ​(actual)​ ​rule. 

boardState()​: Returns the formal representation of all plays so far as a sequential list of tuples, in                 
order of play. Each tuple will contain a card played in the main sequence (that is, played                 
successfully),​ ​then​ ​a​ ​list​ ​of​ ​all​ ​cards​ ​played​ ​unsuccessfully​ ​after​ ​it,​ ​which​ ​may​ ​be​ ​empty. 

play(<card>)​: Play a single card and return ​True ​or False for legal or illegal plays. This is probably a                     
good​ ​place​ ​to​ ​update​ ​​boardState​. 

scientist()​: This function returns the rule your player has found. It is responsible for the inductive                
task, that is, figuring out the rule. When called, this function is responsible for making plays,                
considering the information gained, dealing with hypotheses*, and choosing when (after 20+            
plays)​ ​to​ ​declare​ ​success​ ​and​ ​return​ ​a​ ​rule. 

score()​: Returns the score for the most recent round. (Low is better!) Calculate by adding points as                 
follows: +1 for every successful play over 20 and under 200; +2 for every failed play; +15 for a rule                    
that is not equivalent to the correct rule; +30 for a rule that does not describe all cards on the                    
board. 

Examples 
Rules: 

No​ ​royal​ ​cards,​ ​everything​ ​else​ ​is​ ​legal: 
notf(is_royal(current)) 

A​ ​card​ ​must​ ​not​ ​be​ ​an​ ​even​ ​heart: 
notf(andf(even(current),​ ​equal(suit(current),​ ​H))) 

Black​ ​must​ ​be​ ​followed​ ​by​ ​red: 
iff(equal(color(prev),​ ​B),​ ​equal(color(current),​ ​R),​ ​False))​ ​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​​ ​[​remember​ ​‘iff’​ ​is​ ​‘if’​ ​in​ ​our​ ​parser​] 

Must​ ​either​ ​change​ ​suit​ ​or​ ​go​ ​higher​ ​in​ ​the​ ​same​ ​suit: 
iff(equal(suit(current),​ ​suit(prev)),​ ​​ ​greater(value(current),​ ​value(prev)),​ ​False) 

Black​ ​cards​ ​cannot​ ​be​ ​odd,​ ​except​ ​royal​ ​(face)​ ​cards: 
iff(orf(equal(color(current),​ ​B),​ ​orf(is_royal(current),​ ​even(current)))) 

Board​ ​state​ ​example: 

Black​ ​must​ ​be​ ​followed​ ​by​ ​red: ←​ ​rule 
10​♠​,​ ​3​♥​, 6​♣​,​ ​6​♥​,​ ​7​♦​, 9​♣,​ ​​ ​​... ←​ ​main​ ​line 

 K​♠, A​♠ ←​ ​failed​ ​plays 

9​♣ ←​ ​failed​ ​play 
[​ ​(‘10S’,​ ​[])​ ​(‘3H’,​ ​[])​ ​(‘6C’,​ ​[‘KS’,​ ​‘9C’]),​ ​(‘6H’,​ ​[]),​ ​(‘7D’,[]),​ ​(‘9C’,​ ​[‘AS’]),​ ​...] ←​ ​board​ ​state 

 



 

*A​ ​Note​ ​on​ ​Hypotheses 
How you manage hypotheses will depend completely on your solving strategy. A few things to consider                
(and​ ​discuss​ ​in​ ​your​ ​design​ ​document): 

● How many hypotheses will you maintain at a time? (One, ten, many?) When do you prune the                 
hypothesis​ ​space? 

● How​ ​do​ ​you​ ​determine​ ​the​ ​best​ ​play​ ​for​ ​testing​ ​a​ ​hypothesis? 
● Will your hypotheses be fully bound (that is, 1 hypothesis = 1 complete rule), or will you have                  

partial​ ​hypotheses? 
● When​ ​and​ ​how​ ​do​ ​you​ ​update,​ ​refine,​ ​or​ ​delete​ ​hypotheses? 
● How will you decide when a hypothesis is correct (or rather, when to return it for scoring) in                  

Phase​ ​II? 

In addition, for debugging purposes, it is extremely likely that you (and potentially we) will find it                 
useful to know what hypothesis or hypotheses the system is considering. You will almost certainly               
want​ ​a​ ​function​ ​that​ ​returns​ ​this​ ​information​ ​in​ ​some​ ​form. 

Phase​ ​II​ ​(30%) 
For​ ​Phase​ ​II,​ ​the​ ​following​ ​complexities​ ​will​ ​apply: 

● Your player will no longer be the only one; you will have to analyze and account for plays by                   
other players. Other players may end the game by solving the problem, so efficient solving will                
be​ ​necessary​ ​for​ ​good​ ​scores. 

● Your​ ​player​ ​will​ ​have​ ​a​ ​hand​ ​of​ ​14​ ​cards,​ ​which​ ​will​ ​limit​ ​its​ ​possible​ ​plays. 

● It may be necessary to give a “best guess” rule at ​any time​, which will be scored based on how far                     
it diverges from the true rule. You may also be asked for some measure of how confident your                  
player​ ​is​ ​in​ ​its​ ​hypothesis​ ​or​ ​hypotheses. 

Adversaries 
When entering a game, your scientist will have between 1 and 3 adversaries. Each adversary will play                 
after you play, going cyclically (e.g., the order of play with two adversaries will be [player, ​adv​1, ​adv​2,                  
player, ​adv​1, ​adv​2, ...]). At any point, any player (including your scientist!) may announce that they are                 
ready to guess a rule. At this point, ​the game ends, and all players must return a best guess at the                     
current​ ​rule.​ ​The​ ​score​ ​function​ ​will​ ​be​ ​modified​ ​as​ ​shown​ ​below. 

For testing purposes, we will provide an Adversary class that plays (fairly) randomly; this will allow                
you to test your scientist against other players (although not very good ones). You must use objects                 
from this class as adversaries. You are welcome to change the adversary’s behavior to make the game                 
harder​ ​for​ ​testing​ ​if​ ​you​ ​like;​ ​we​ ​will​ ​use​ ​a​ ​more​ ​sophisticated​ ​adversary​ ​during​ ​grading. 

 



 

 

Calculating​ ​Scores 
Your​ ​code​ ​will​ ​need​ ​to​ ​modify​ ​scoring​ ​as​ ​follows: 

score(player)​:​ ​Returns​ ​the​ ​score​ ​for​ ​the​ ​selected​ ​player’s​ ​most​ ​recent​ ​round.​ ​(​Low​ ​is​ ​better!​) 

● Add​​ ​points​ ​as​ ​follows:  
○ +1 for every successful play over 20 cards and under 200 cards; +2 for every unsuccessful                

play; +15 for a rule that is not equivalent to the correct rule; +30 for a rule that does not                    
describe​ ​all​ ​cards​ ​on​ ​the​ ​board. 

● Subtract​​ ​points​ ​as​ ​follows: 
○ Each player that guesses the correct rule (see below) with few or no extra terms, receives an                 

additional​ ​bonus​ ​of​ ​-75​ ​points. 
○ If​ ​the​ ​player​ ​that​ ​ended​ ​the​ ​game​ ​gives​ ​the​ ​correct​ ​rule,​ ​it​ ​receives​ ​an​ ​additional​ ​-25​ ​points. 

No​ ​other​ ​players​ ​receive​ ​points,​ ​that​ ​is,​ ​there​ ​is​ ​no​ ​“partial​ ​credit.” 

A​ ​Note​ ​on​ ​Rule​ ​Equivalence 
In general, determining whether two logical statements are equivalent is an NP-hard problem. That              3

gets​ ​intractable​ ​quickly!​ ​Here​ ​are​ ​three​ ​possibilities​ ​for​ ​logical​ ​equivalence: 

1. Calculate exact equivalence for rules directly by using a general theorem proving method or              
heuristics​ ​specific​ ​to​ ​our​ ​cards​ ​problem.​ ​This​ ​will​ ​only​ ​work​ ​for​ ​certain​ ​rules. 

2. Evaluate all combinations of three cards for both rules: 52​3 (140,608) operations. Pretty             
feasible, especially if combined with heuristics. Because our rules cover at most the previous              
two​ ​cards,​ ​this​ ​is​ ​​exact​. 

3. Run some large or very large number of cards (selected randomly or otherwise) against both               
rules and see if they perform the same. This is ​approximate​; its accuracy depends on how many                 
cards​ ​you​ ​play​ ​and​ ​asymptotically​ ​approaches​ ​exactness. 

Hand​ ​Limits 
Your scientist must now maintain a hand of 14 cards at all times, drawn randomly from all possible                  
cards. In practice, this means that you must ​randomly select ​14 cards (from infinite deck) at the                 
beginning of the game. Each time your scientist plays a card, you must add a new, ​randomly selected                  
one to the 13 still available to you. You may not discard cards or “choose” cards non-randomly, and all                   
plays​ ​must​ ​come​ ​from​ ​the​ ​14​ ​currently​ ​in​ ​the​ ​hand. 

Suggestions 
You​ ​will​ ​probably​ ​get​ ​the​ ​best​ ​results​ ​considering​ ​the​ ​following​ ​suggestions: 

3 Specifically, it is in a class called Co-NP-complete, meaning it’s often easy to find negative counterexamples, but                  
for​ ​positive​ ​examples​ ​you​ ​must​ ​solve​ ​the​ ​entire​ ​problem. 

 



 

● Concentrate on improving your solver, not on game theory. Since you don’t know what type of                
adversaries you may encounter, and they aren’t guaranteed to be the same from game to game,                
the only demonstrably good strategy—not to mention the most interesting problem—is to try             
to​ ​get​ ​your​ ​scientist​ ​to​ ​return​ ​the​ ​correct​ ​rule​ ​as​ ​fast​ ​as​ ​possible. 

● If you aren’t considering your adversaries’ plays, you’re losing out a significant source of              
information. How can you take advantage of plays that weren’t selected by your scientist to               
further​ ​prune​ ​your​ ​search​ ​space? 

Writeup​ ​(20%) 
Each team must submit a 6-8 page (3000-4000 words, not counting references and citations) project               
report. It should cover both your Phase I and Phase II, and describe your approach, your experience in                  
designing​ ​and​ ​implementing​ ​the​ ​approach,​ ​and​ ​the​ ​evaluated​ ​performance​ ​of​ ​your​ ​system. 

1. A discussion of your final, implemented game strategies and how you developed them. This              
discussion should have a section on your Ph​deas​ase I player and a separate section on your Phase                 
II​ ​player,​ ​and​ ​can​ ​discuss​ ​what​ ​changes​ ​you​ ​made​ ​in​ ​between. 

2. A discussion of how your system draws on i from the AI literature. This discussion should be                 
focused on concepts ​from class. If you use other AI sources, please be very clear about what they                  
are​ ​and​ ​consider​ ​checking​ ​with​ ​me​ ​to​ ​make​ ​sure​ ​they​ ​are​ ​suitably​ ​AI-“ish.” 
○ You may want to talk about better methods that you weren't able to implement. If you ended                 

up with something relatively simple, but had some ambitious/interesting ideas that you            
weren't​ ​able​ ​to​ ​get​ ​working​ ​in​ ​the​ ​scope​ ​of​ ​the​ ​semester,​ ​you​ ​should​ ​talk​ ​about​ ​it​ ​here. 

3. References for the AI concepts you mention (it's OK to cite the textbook, but please include                
specific​ ​section​ ​numbers).  

4. Experimental evaluation of your system. How did you test it to see if it works? How well did it                   
do? This section should discuss what worked well, and not so well, about your player's strategies;                
and whether the player behaves as expected. Both qualitative/anecdotal and quantitative data            
should​ ​be​ ​included​ ​in​ ​this​ ​discussion;​ ​this​ ​is​ ​where​ ​graphs,​ ​multiple-trial​ ​experiments,​ ​etc.​ ​go. 

A​ ​Note​ ​on​ ​Cooperation 
Teams should not share solutions and must follow the usual rules about sharing code, e.g., you should                 
never have copies of or be using someone else’s code or ideas except for occasional help debugging is                  
okay. In this case, that means “Someone who is not on your team” – teams can and should be working                    
together​ ​closely. 

However, you may find that you have some good ideas about utility functions (tracing your player’s                
behavior, analyzing game state, printing hypotheses, testing rules for equivalence...). You may think             
that some of this code could be useful for other students. You’re probably right, and that’s great! Please                  
feel free to send the TA and professor any code that you develop that might be generally useful; we will                    
vet it against the academic integrity policy and post it into a code repository. (If you’re having trouble                  
with​ ​class​ ​participation,​ ​this​ ​is​ ​a​ ​great​ ​way​ ​to​ ​contribute.) 

 


