
CMSC 671 (Introduction to AI) – Fall 2017

Homework 1: Python and AI

Due:	9/18	at	11:59pm.	
Turnin:	Blackboard.	
Submit:	 •	 Parts	I	and	II	together	as	a	single	PDF	file	named	yourlastname_hw1-text.pdf.	
	 •	 Part	III	as	a	single	.py	file	named	yourlastname_hw1-program.py,	containing	
	 	 everything	specified	in	the	assignment.		
Notes:		 •		 These	are	individual	assignments,	not	group	work.		
	 •		 All	files	must	start	with	your	last	name.	
	
	
PART	I.		WHAT	IS	AI?	(15	PTS)	

Reading:	Read	John	McCarthy's	paper,	“What	is	AI?”	
http://tiny.cc/mc-what-is-ai

Reading:		Read	the	recent	100-year	retrospective	through	section	II:
http://ai100.stanford.edu/2016-report

	
Assignment:	Answer	the	following	questions	in	a	short	essay	(500-800	words):	
• Based	on	both	papers:	

o What	did	you	think	“AI”	meant	before	the	reading?	
o Did	anything	you	read	change	your	mind?	How?	

• On	McCarthy:	
o Does	McCarthy	see	the	primary	goal	of	AI	as	modeling	human	intelligence?	Why	or	

why	not?	
• On	the	Stanford	report:	

o How	much	of	“modern	AI”	is	based	on	trying	to	model	human	intelligence?	
o Do	 you	 agree	 on	 what	 the	 primary	 goal(s)	 of	 AI	 should	 be,	 and	 whether	 it	 is	

achievable?	
• Summarize	some	of	the	key	challenges	in	achieving	human-level	intelligence.	

PART	II.	AI	NOW	(15	PTS.)	

Assignment:	Answer	the	following	questions	(1-2	sentences	per	question)	
1. What	current	research	trend	do	you	think	shows	the	most	promise,	that	is,	seems	

most	likely	to	produce	interesting	and	important	results?	
2. Why	is	that	your	choice?	
3. What	current	area	(research	trend	OR	application	area)	of	AI	are	you	most	excited	

about?	
4. Why?	
5. Based	on	what	you	read,	what	area	or	trend	do	you	think	is	least	promising,	or	should	

not	be	pursued?	
6. Why?	

PART	III.		INTRODUCTION	TO	PYTHON	(40	PTS)	

If	you	are	not	familiar	with	Python,	there	are	lots	of	online	resources.	Any	resource	where	
you	look	at	code	samples	should	be	cited	in	the	comments	at	the	beginning	of	the	program.	
Documentation	and	error	checking	are	essential	 in	this	class,	so	although	these	problems	
are	 very	 simple,	 your	 code	must	 be	 documented,	 and	 error	 cases	must	 be	 handled.	 (For	
example,	what	if	someone	passes	a	non-coordinate	string	to	4(b)?)	
We	 will	 test	 your	 code	 automatically,	 so	 it	 is	 important	 that	 you	 follow	 all	 naming	
conventions	specified	and	use	the	correct	parameters.	
We	are	using	Python	3,	not	2,	for	this	course.	

Problem 1: Lists, Sets, Tuples, and Libraries (12 points)

(a)	Import	the	random	library.	

(b)	Write	a	short	function	called	world_shuffle	that:	 3	
1. Populates	a	list	with	the	individual	characters	of	“Hello	World!”	(‘H’,	‘e’,	‘l’,	‘l’,	etc.)	
2. Uses	random.shuffle	to	randomly	permute	the	elements	of	the	list.	
3. Concatenates	all	the	elements	of	the	shuffled	list	into	a	single	string;	and	
4. Returns	the	result.		

Here	is	an	example	of	one	possible	output:	
world_shuffle() ⇒ rleWHoold !l	

(c)	Write	a	short	function	called	shuffle_anyset	that:	 4	
1. Creates	an	empty	set.	
2. Populates	the	set	with	the	individual	characters	of	“Hello	World!”	(‘H’,	‘e’,	‘l’,	‘l’,	etc.)	
3. Concatenates	the	elements	of	the	set	into	a	string;	and	
4. Returns	the	result.		

(d)	Write	a	short	function	called	make_map	that:	 5	
1. Creates	an	empty	list.	
2. Populates	the	list	with	25	two-element	tuples	representing	pairs	of	numbers	ranging	from	

1-5	and	1-5.	(I.e.:	(1,1),	(1,2),	…	(1,5),	(2,1),	(2,2),	…,	(5,5).)	
3. Prints	the	resulting	list,	five	items	per	line.	

Here	are	the	first	two	lines	of	the	expected	output:	
(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)	
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5)

These	tuples	are	coordinates	into	a	grid-based	map	(shown	below).	

Problem 2: Dictionaries and Manhattan Distance (18 points)

(a)	Write	a	function	called	map_dict	that:		 6	
1. Creates	a	dictionary	containing	25	key/value	pairs	labeling	the	map	spaces.	

a. Key:	string	label,	e.g.,	“A1”,	“A2”,	…,	“E5”	
b. Value:	the	tuple	containing	the	tuple	of	coordinates	for	that	space.	
c. Returns	this	dictionary.	

(b)	Write	a	function	called	manhattan_dist	that:		 12	
1. Takes	two	map	coordinate	labels	as	arguments.	

2. Calculates	the	Manhattan	distance	between	those	coordinates:	the	smallest	number	of	steps	
you	would	have	to	take	to	get	between	them	if	you	cannot	go	diagonally.	

3. Returns	this	distance.	

Here	is	an	example	of	one	possible	test	case:	
manhattan_dist(“A1”, “D4”) ⇒ 6	

	
	
	

	

Problem 3: Call and Test (10 points)

Write	a	main	method	that	calls	all	of	the	functions	from	Problems	1	and	2,	and	prints	out	the	results	
with	descriptive	labels.	

