

Bookkeeping

- HW 2 Due 10/3, 11:59pm
- Blackboard assignment open Friday
- Important: understand the math in Chapter 13 thoroughly
- Underpins future work
- Also basically all of modern AI
- Grading
- $\mathrm{A}=92-100, \mathrm{~A}-=90-92, \mathrm{~B}$ is $82-87, \mathrm{~B}$ - is $80-82, \mathrm{~B}+$ is $88-89$, etc
- These may be revised downward.

Bayesian Reasoning

- Posteriors and priors
- What is inference?
- What is uncertainty?
- When/why use probabilistic reasoning?
- What is induction?
- What is the probability of two independent events?
- Frequentist/objectivist/subjectivist assumptions

Sources of Uncertainty

- Uncertain inputs
- Missing data
- Noisy data
- Uncertain knowledge
>1 cause $\rightarrow>1$ effect
Incomplete knowledge of conditions or effects
Incomplete knowledge of
causality
Probabilistic effects
- Uncertain outputs

Default reasoning (even deduction) is uncertain

- Abduction \& induction inherently uncertain

Incomplete deductive inference can be uncertain

Probabilistic reasoning only gives probabilistic results (summarizes uncertainty from various sources)

Decision Making with Uncertainty

- Rational behavior: for each possible action,
- Identify possible outcomes
- Compute probability of each outcome
- Compute utility of each outcome
- Compute probability-weighted (expected) utility of possible outcomes for each action
- Select the action with the highest expected utility (principle of Maximum Expected Utility)

Also the definition of "rational" for deterministic decision-making.

- World: The complete set of states
- Event: Something that happens
- Sample Space: All the things (outcomes) that
could happen in some set of circumstances
- Pull 2 squares from envelope A: what is the sample space?
- How about envelope B?
- Probability $P(x):$ likelihood of event x occurring
- How many of each did you get from A? From B?

Basic Probability

- Each P is a non-negative value in $[0,1]$
- Total probability of the sample space is 1
- For mutually exclusive events, the probability for at least one of them is the sum of their individual probabilities
- Experimental probability
- Based on frequency of past events
- Subjective probability
- Based on expert assessment

Why Probabilities Anyway?

3 simple axioms \rightarrow all rules of probability theory*

1. All probabilities are between 0 and 1 .
$0 \leq P(a) \leq 1$
2. Valid propositions (tautologies) have probability 1 , and unsatisfiable propositions have probability 0 .

- $P($ true $)=1$
- $P(f a l s e)=0$

3. The probability of a disjunction is:
$P(a \vee b)=P(a)+P(b)-P(a \wedge b)$

- Random variables:
- Domain: possible values
- Atomic event:
- Complete specification of a state
- Prior probability:
- Degree of belief without any new evidence
- Joint probability:

Matrix of combined probabilities of a set of variables

- Alarm (A), Burglary (B), Earthquake (E)
- Boolean, discrete, continuous
- $\mathrm{A}=$ true $\wedge \mathrm{B}=$ true $\wedge \mathrm{E}=$ false:
- alarm \wedge burglary $\wedge \neg$ earthquake
- $P(B)=0.1$
- $P(A, B)=$

	alarm	ᄀalarm
burglary	0.09	0.01
ᄀburglary	0.1	0.8

Probability Theory

Probability Theory: Definitions

- Conditional probability
- Probability of effect given cause(s)
- Computing conditional probability:
- $P(a \mid b)=$ $P(a \wedge b) / P(b)$
- $P(b)$: normalizing constant
- Product rule:
- $P(a \wedge b)=P(a \mid b) P(b)$
- Marginalizing:
- Finding distribution over a subset of variables
- $P(B)=\Sigma_{a} P(B, a)$
- $P(B)=\Sigma_{a} P(B \mid a) P(a)$ (conditioning)
- $P(A \mid B)=$?
- $P(B \mid A)=$?
- $P(B \wedge A)=$?

	alarm	\neg alarm
burglary	0.09	0.01
\neg burglary	0.1	0.8

- Cond'l probability
- $P(A)=$?
- $P(a \mid b)=P(a \wedge b) / P(b)$
- $P(b)$: normalizing constant
- Marginalizing:
- $P(B)=\Sigma_{a} P(B, a)$
- $P(B)=\Sigma_{a} P(B \mid a) P(a)$ (conditioning)

Try It...

- Product rule:
$P(a \wedge b)=P(a \mid b) P(b)$ (

Probability Theory (cont.)

- Cond'l probability
- P(effect, cause[s])
- $P(a \mid b)=P(a \wedge b) / P(b)$
- Here, $P(b)$: normalizing constant (α)
- Product rule:
- $P(a \wedge b)=P(a \mid b) P(b)$
- Marginalizing:
- $P(B)=\Sigma_{a} P(B, a)$
- $P(B)=\sum_{a} P(B \mid a) P(a)$
- $P(A \mid B)=0.9$ $P(B \mid A)=0.47$
- $P(B \mid A)=P(B \wedge A) / P(A)=$ $0.09 / 0.19=0.47$
- $P(B \wedge A)=P(B \mid A) P(A)=$ $0.47 \times 0.19=0.09$
- $P(A)=$ $P(A \wedge B)+P(A \wedge \neg B)=$ (conditioning)
$0.09+0.1=0.19$
(conditioning)

Exercise: Inference from the Joint

- Queries: what is...
- The prior probability of smart?
- The prior probability of study?

Where do these come from?

- The conditional probability of prepared, gi tudy and smart?
- Save these answers for later! :)

$\begin{gathered} P(\text { smart } \wedge \\ \text { study } \wedge \text { prep }) \end{gathered}$	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	. 432	. 16	. 084	. 008
\neg prepared	. 048	16	. 036	. 072

Independence: \Perp

Independence Example

- \{moon-phase, light-level $\}$ \{burglary, alarm, earthquake $\}$
- But maybe burglaries increase in low light
- But, if we know the light level, moon-phase \Perp burglary
- Once we're burglarized, light level doesn't affect whether the alarm goes off; $\{$ light-level $\} \Perp\{$ alarm $\}$
- We need:

1. A more complex notion of independence
2. Methods for reasoning about these kinds of (common) relationships

Conditional Probabilities

- Describes dependent events
- Affect each other in some way
- Typical in the real world
- If we know some event has occurred, what does that tell us about the likelihood of another event?

Conditional Independence

- moon-phase and burglary are conditionally independent given light-level
- That is, $M \Perp B$ if we already know L
- Conditional independence is:
- Weaker than absolute independence
- Useful in decomposing full joint probability distributions

Exercise: Conditional Independence				
P(smart \wedge				
study \wedge prep)	study	\rightarrow study	study	\rightarrow study
prepared	. 432	. 16	. 084	. 008
\rightarrow prepared	. 048	. 16	. 036	. 072
- Queries: - Is smart conditionally independent of prepared, given study? Is study conditionally independent of prepared, given smart?				
23				

Conditional Independence

- Absolute independence: $\mathrm{A} \Perp \mathrm{B}$, if:
- $P(\mathrm{~A} \wedge \mathrm{~B})=P(\mathrm{~A}) P(\mathrm{~B})$
- Equivalently, $P(\mathrm{~A})=P(\mathrm{~A} \mid \mathrm{B})$ and $P(\mathrm{~B})=P(\mathrm{~B} \mid \mathrm{A})$
- A and B are conditionally independent given C if: - $P(\mathrm{~A} \wedge \mathrm{~B} \mid \mathrm{C})=P(\mathrm{~A} \mid \mathrm{C}) P(\mathrm{~B} \mid \mathrm{C})$
- This lets us decompose the joint distribution: - $P(\mathrm{~A} \wedge \mathrm{~B} \wedge \mathrm{C})=P(\mathrm{~A} \mid \mathrm{C}) P(\mathrm{~B} \mid \mathrm{C}) P(\mathrm{C})$
- What does this mean?

Bayes' Rule	
- Derive the probability of an event given another event Assumption of attribute independency (Naïve assumption): Naïve Bayes assumes that all of the attributes are independent.	
- Bayes' rule is derived from the product rule: $\text { - } P(Y \mid X)=P(X \mid Y) P(Y) / P(X)$	R\&N 495
- Often useful for diagnosis. If we have: - $X=$ (observed) effects, $Y=$ (hidden) causes - A model for how causes lead to effects: $P(X \mid Y)$ - Prior beliefs about frequency of occurrence of effects: $P(Y)$	
- We can reason abductively from effects to causes: $\text { - } P(Y \mid X)$	
24	

Bayesian Inference

- In the setting of diagnostic/evidential reasoning

hypotheses
evidence/manifestations
- Know: prior probability of hypothesis conditional probability
Want to compute the posterior probability $\quad \boldsymbol{P}\left(\boldsymbol{H}_{\mid} \mid \boldsymbol{E}_{j}\right)$
- Bayes' theorem (formula 1):

$$
P\left(H_{i} \mid E_{j}\right)=P\left(H_{i}\right) P\left(E_{j} \mid H_{i}\right) / P\left(E_{j}\right)
$$

Bayesian Diagnostic Reasoning II

- Bayes' rule says that
- $\mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}}\right)=\mathrm{P}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}} \mid \mathrm{H}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{H}_{\mathrm{i}}\right) / \mathrm{P}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}}\right)$
- Assume each piece of evidence E_{i} is conditionally independent of the others, given a hypothesis H_{i}, then: - $\mathrm{P}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}} \mid \mathrm{H}_{\mathrm{i}}\right)=\prod_{\mathrm{j}=1}^{1} \mathrm{P}\left(\mathrm{E}_{\mathrm{j}} \mid \mathrm{H}_{\mathrm{i}}\right)$
- If we only care about relative probabilities for the H_{i}, then we have:
- $\mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}}\right)=\alpha \mathrm{P}\left(\mathrm{H}_{\mathrm{i}}\right) \prod_{\mathrm{j}=1}^{1} \mathrm{P}\left(\mathrm{E}_{\mathrm{j}} \mid \mathrm{H}_{\mathrm{i}}\right)$

For our Envelopes

- Envelope A has 10 blue and 10 red
- Envelope B as 7 blue and 13 red
- So if we pull a red square it is slightly more likely to be from Envelope B
- A blue square is slightly more likely to be from Envelope A

Bayes Example: Diagnosing Meningitis

$$
P\left(H_{i} \mid E_{j}\right)=P\left(H_{i}\right) P\left(E_{j} \mid H_{i}\right) / P\left(E_{j}\right)
$$

- Suppose we know that
- Stiff neck is a symptom in 50% of meningitis cases
- Meningitis (m) occurs in 1/50,000 patients
- Stiff neck (s) occurs in $1 / 20$ patients
- Then
- $\mathrm{P}(\mathrm{s} \mid \mathrm{m})=0.5, \mathrm{P}(\mathrm{m})=1 / 50000, \mathrm{P}(\mathrm{s})=1 / 20$
- $\mathrm{P}(\mathrm{m} \mid \mathrm{s})=(\mathrm{P}(\mathrm{s} \mid \mathrm{m}) \mathrm{P}(\mathrm{m})) / \mathrm{P}(\mathrm{s})$
$=(0.5 \times 1 / 50000) / 1 / 20=.0002$
- So we expect that one in 5000 patients with a stiff neck to have meningitis.

Limitations of Simple Bayesian Inference

- Cannot easily handle multi-fault situations, nor cases where intermediate (hidden) causes exist:
- Disease D causes syndrome S, which causes correlated manifestations M_{1} and M_{2}
- Consider a composite hypothesis $\mathrm{H}_{1} \wedge \mathrm{H}_{2}$, where H_{1} and H_{2} are independent. What is the relative posterior?
$\cdot \mathrm{P}\left(\mathrm{H}_{1} \wedge \mathrm{H}_{2} \mid \mathrm{E}_{1}, \ldots, \mathrm{E}_{1}\right)=\alpha \mathrm{P}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{1} \mid \mathrm{H}_{1} \wedge \mathrm{H}_{2}\right) \mathrm{P}\left(\mathrm{H}_{1} \wedge \mathrm{H}_{2}\right)$ $=\alpha \mathrm{P}\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{1} \mid \mathrm{H}_{1} \wedge \mathrm{H}_{2}\right) \mathrm{P}\left(\mathrm{H}_{1}\right) \mathrm{P}\left(\mathrm{H}_{2}\right)$
$=\alpha \prod_{\mathrm{j}=1}^{\mathrm{L}}, \mathrm{P}\left(\mathrm{E}_{\mathrm{j}} \mid \mathrm{E}_{1} \wedge \mathrm{H}_{2}\right) \mathrm{P}\left(\mathrm{H}_{1}\right) \mathrm{P}\left(\mathrm{H}_{2}\right)$
- How do we compute $P\left(\mathrm{E}_{\mathrm{j}} \mid \mathrm{H}_{1} \wedge \mathrm{H}_{2}\right)$??

Limitations of Simple Bayesian Inference II

- Assume H 1 and H 2 are independent, given $\mathrm{E} 1, \ldots, \mathrm{El}$?
$P\left(H_{1} \wedge H_{2} \mid E_{1}, \ldots, E_{1}\right)=P\left(H_{1} \mid E_{1}, \ldots, E_{1}\right) P\left(H_{2} \mid E_{1}, \ldots, E_{1}\right)$
- This is a very unreasonable assumption

Earthquake and Burglar are independent, but not given Alarm:

- P(burglar | alarm, earthquake) << P(burgla | alarm)
- Simple application of Bayes' rule doesn't handle causal chaining:

A: this year's weather; B: cotton production; C: next year's cotton price
A influences C indirectly: $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C}$
$\mathrm{P}(\mathrm{C} \mid \mathrm{B}, \mathrm{A})=\mathrm{P}(\mathrm{C} \mid \mathrm{B})$

- Need a richer representation to model interacting hypotheses, conditional independence, and causal chaining
- Next time: conditional independence and Bayesian networks!
$\square 34$

