

Bayesian Reasoning

- · Posteriors and priors
- · What is inference?
- What is uncertainty?
- · When/why use probabilistic reasoning?
- · What is induction?
- What is the probability of two independent events?
- · Frequentist/objectivist/subjectivist assumptions

Probability

- World: The complete set of states
- Event: Something that happens
- Sample Space: All the things (outcomes) that could happen in some set of circumstances
- Pull 2 squares from envelope A: what is the sample space? How about envelope B?
- **Probability** *P*(*x*): likelihood of event *x* occurring
- · Pull a few more squares.
- How many of each did you get from A? From B?

Basic Probability

- Each P is a non-negative value in [0,1]
- Total probability of the sample space is 1
- For mutually exclusive events, the probability for at least one of them is the sum of their individual probabilities

anb) b

a

- · Experimental probability
 - Based on frequency of past events
- Subjective probability
- Based on expert assessment

	Exercis	e: Ir	ıdej	pen	deı	nce		
	P(smart A	smart			¬smart			
	study ∧ prep)	study	-stud	y st	udy ¬stud		ly	
	prepared	.432	.16	.0	84	.008		
	¬prepared	.048	.16	.0	.072			
~	eries:		Smart	Study	tudy			
 Is smart independent of 			t t	t	0.432 + 0.48		0.480	
• Is <i>prepared</i> independent			t	f	0.16 + 0.16		0.32	
			f	t	0.084 + 0.008		0.092	
			f	f	0.036 + 0.72		0.756	
		1	19					

- **Absolute** independence: A \perp B, if: • $P(A \land B) = P(A) P(B)$
 - Equivalently, P(A) = P(A | B) and P(B) = P(B | A)
- A and B are **conditionally independent** given C if: • $P(A \land B | C) = P(A | C) P(B | C)$
- This lets us decompose the joint distribution:
 P(A \wedge B \wedge C) = P(A | C) P(B | C) P(C)
- What does this mean?

Exercise: Conditional Independence

P(smart ∧	sn	art	¬smart		
study \land prep)	study	¬study	study	¬study	
prepared	.432	.16	.084	.008	
¬prepared	.048	.16	.036	.072	

Queries:

• Is *smart* conditionally independent of *prepared*, given *study*?

Is *study* conditionally independent of *prepared*, given *smart*?

- Assume each piece of evidence E_i is conditionally independent of the others, given a hypothesis H_i, then:
 P(E₁, ..., E_m | H_i) = ∏_{j=1} P(E_j | H_i)
- If we only care about relative probabilities for the H_i, then we have:

 P(H_i | E₁, ..., E_m) = α P(H_i) Πⁱ_{i=1} P(E_i | H_i)

Analysis of Naïve Bayes Algorithm

- Advantages:
 - · Sound theoretical basis
 - · Works well on numeric and textual data
 - Easy implementation and computation
 - Has been effective in practice (e.g., typical spam filter)

Limitations of Simple Bayesian Inference

- Cannot easily handle multi-fault situations, nor cases where intermediate (hidden) causes exist:
 Disease D causes syndrome S, which causes correlated manifestations M₁ and M₂
- Consider a composite hypothesis $H_1 \wedge H_2$, where H_1 and H_2 are independent. What is the relative posterior? • $P(H_1 \wedge H_2 | E_1, ..., E_l) = \alpha P(E_1, ..., E_l | H_1 \wedge H_2) P(H_1 \wedge H_2)$ = $\alpha P(E_1, ..., E_l | H_1 \wedge H_2) P(H_1) P(H_2)$ = $\alpha \prod_{j=1}^{l} P(E_j | H_1 \wedge H_2) P(H_1) P(H_2)$
- How do we compute $P(E_i | H_1 \land H_2)$??

Limitations of Simple Bayesian Inference II

- This is a very unreasonable assumption • Earthquake and Burglar are independent, but *not* given Alarm: • P(burglar | alarm, earthquake) << P(burglar | alarm)
- Simple application of Bayes' rule doesn't handle causal chaining:
 A: this year's weather; B: cotton production; C: next year's cotton price
 A influences C indirectly: A→ B → C

34

- P(C | B, A) = P(C | B)
- Need a richer representation to model interacting hypotheses,
- conditional independence, and causal chaining Next time: conditional independence and Bayesian networks!