Informed Search
AI Class 4 (Ch. 3.5-3.7)

Based on slides by Dr. Marie desJardin. Some material also adapted from slides by Dr. Matuszek @ Villanova University, which are based on Hwee Tou Ng at Berkeley, which are based on Russell at Berkeley. Some diagrams are based on AIMA.
Bookkeeping

- HW 1 due 9/19, 11:59pm – **Monday night**
- Reminder: Office hours

<table>
<thead>
<tr>
<th></th>
<th>Days and Times</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA (Koninika Patil)</td>
<td>Tues, Thurs 12-1</td>
<td>ITE 353H</td>
</tr>
<tr>
<td>Grader (Tejas Sathe)</td>
<td>Wednesday 3-4</td>
<td>ITE 353H</td>
</tr>
<tr>
<td>Professor (Dr. M)</td>
<td>Tues 3:30-4:30,</td>
<td>ITE 331</td>
</tr>
<tr>
<td></td>
<td>Wednesday 9-10</td>
<td></td>
</tr>
</tbody>
</table>
Today’s Class

• Heuristic search
• Best-first search
 • Greedy search
 • Beam search
 • A, A*
 • Examples
• Memory-conserving variations of A*
• Heuristic functions

“An informed search strategy—one that uses problem specific knowledge... can find solutions more efficiently then an uninformed strategy.”

– R&N pg. 92
Weak vs. Strong Methods

- **Weak methods:**
 - Extremely *general*, not tailored to a specific situation

- **Examples**
 - **Means-ends analysis:** try to represent the current situation the goal, then look for ways to shrink the differences between the two
 - **Space splitting:** try to list the possible solutions to a problem, then try to rule out classes of these possibilities.
 - **Subgoaling:** split a large problem into several smaller ones that can be solved one at a time.

- Called “weak” methods because they do not take advantage of more powerful domain-specific heuristics
Heuristic

Free On-line Dictionary of Computing*
1. A rule of thumb, simplification, or educated guess
2. Reduces, limits, or guides search in particular domains
3. Does not guarantee feasible solutions; often used with no theoretical guarantee

WordNet (r) 1.6*
1. Commonsense rule (or set of rules) intended to increase the probability of solving some problem

*Heavily edited for clarity
Heuristic Search

• Uninformed search is **generic**
 • Node selection depends only on shape of tree and node expansion strategy.

• Sometimes **domain knowledge** → Better decision
 • Knowledge about the specific problem

• Romania:
 • Eyeballing it → certain cities first
 • They “look closer” to where we are going

• Can domain knowledge can be captured in a heuristic?
Heuristics Examples

- **8-puzzle:**
 - # of tiles in wrong place

- **8-puzzle (better):**
 - Sum of distances from goal
 - Captures distance *and* number of nodes

- **Romania:**
 - Straight-line distance from start node to Bucharest
 - Captures “closer to Bucharest”
Heuristic Function

- **All** domain-specific knowledge is encoded in heuristic function h

- h is some estimate of how desirable a move is
 - How “close” (we think) it gets us to our goal

- Usually:
 - $h(n) \geq 0$: for all nodes n
 - $h(n) = 0$: n is a goal node
 - $h(n) = \infty$: n is a dead end (no goal can be reached from n)
Goal: select the best path to continue searching

Define $h(n)$ to estimate the “goodness” of node n
- $h(n) = \text{estimated cost}$ (or distance) of minimal cost path from n to a goal state

Heuristic function is:
- An estimate of how close we are to a goal
- Based on domain-specific information
- Computable from the current state description
Straight Lines to Budapest (km)

\[h_{SLD}(n) \]

- Arad: 366
- Bucharest: 0
- Craiova: 160
- Drobota: 242
- Eforie: 161
- Fagaras: 176
- Giurgiu: 77
- Hirsova: 151
- Iasi: 226
- Lugoj: 244
- Mehadia: 241
- Neamt: 234
- Oradea: 380
- Pitesti: 100
- Rimnicu Vilcea: 193
- Sibiu: 253
- Timisoara: 329
- Urziceni: 80
- Vaslui: 199
- Zerind: 374
Admissible Heuristics

- Admissible heuristics never *overestimate* cost
 - They are *optimistic* – think goal is closer than it is
 - $h(n) \leq h^*(n)$
 - where $h^*(n)$ is *true* cost to reach goal from n
 - $h_{LSD}(\text{Lugoj}) = 244$
 - Can there be a shorter path?

- Using admissible heuristics guarantees that the first solution found will be optimal
Best-First Search

• Order nodes on the list by
 • Increasing value of an evaluation function $f(n)$
 • $f(n)$ incorporates domain-specific information
 • Different $f(n)$ \Rightarrow Different searches

• A generic way of referring to informed methods
Best-First Search (more)

- Use an evaluation function $f(n)$ for each node
 - estimate of “desirability”

- Expand most desirable unexpanded node
 - Implementation:
 - Order nodes in frontier in decreasing order of desirability

- Special cases:
 - Greedy best-first search
 - A* search
Greedy Best-First Search

- Idea: always choose “closest node” to goal
 - Most likely to lead to a solution quickly

- So, evaluate nodes based only on heuristic function
 - \(f(n) = h(n) \)

- Sort nodes by increasing values of \(f \)

- Select node believed to be closest to a goal node (hence “greedy”)
 - That is, select node with smallest \(f \) value
Greedy Best-First Search

- Not admissible
- Example:
 - Greedy search will find: \(a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow g \); cost = 5
 - Optimal solution: \(a \rightarrow g \rightarrow h \rightarrow i \); cost = 3
- Not complete (why?)
Straight Lines to Budapest (km)

$h_{SLD}(n)$

- Arad: 366
- Bucharest: 0
- Craiova: 160
- Drobeta: 242
- Eforie: 161
- Fagaras: 176
- Giurgiu: 77
- Hirsova: 151
- Iasi: 226
- Lugoj: 244
- Mehedia: 241
- Neamt: 234
- Oradea: 380
- Pitesti: 100
- Rimnicu Vilcea: 193
- Sibiu: 253
- Timisoara: 329
- Urziceni: 80
- Vaslui: 199
- Zerind: 374

R&N pg. 68, 93
Greedy Best-First Search: Ex. 1

What can we say about the search space?
Greedy Best-First Search: Ex. 2

$h_{SLD}(n)$
Greedy Best-First Search: Ex. 2
Greedy Best-First Search: Ex. 2
Greedy Best-First Search: Ex. 2
Beam Search

- Use an evaluation function $f(n) = h(n)$, but the maximum size of the nodes list is k, a fixed constant
- Only keeps k best nodes as candidates for expansion, and throws the rest away
- More space-efficient than greedy search, but may throw away a node that is on a solution path
- Not complete
- Not admissible
Algorithm A

- Use evaluation function
 \[f(n) = g(n) + h(n) \]
- \(g(n) \) = minimal-cost path from any \(S \) to state \(n \)
- Ranks nodes on search frontier by *estimated* cost of solution
 - From start node, through given node, to goal
- Not complete if \(h(n) \) can = \(\infty \)
- Not admissible
Algorithm A

1. Put the start node S on the nodes list, called OPEN

2. If OPEN is empty, exit with failure

3. Select node in OPEN with minimal $f(n)$ and place on CLOSED

4. If n is a goal node, collect path back to start and stop.

5. Expand n, generating all its successors and attach to them pointers back to n.
 For each successor n' of n
 1. If n' is not already on OPEN or CLOSED
 • put n' on OPEN
 • compute $h(n'), g(n') = g(n) + c(n,n'), f(n') = g(n') + h(n')$
 2. If n' is already on OPEN or CLOSED and if $g(n')$ is lower for the new version of n', then:
 • Redirect pointers backward from n' along path yielding lower $g(n')$.
 • Put n' on OPEN.
Some Observations on A

- **Perfect heuristic**: If $h(n) = h^*(n)$ for all n:
 - Only nodes on the optimal solution path will be expanded
 - No extra work will be performed
- **Null heuristic**: If $h(n) = 0$ for all n:
 - This is an admissible heuristic
 - A^* acts like Uniform-Cost Search

The closer h is to h^*, the fewer extra nodes will be expanded
Some Observations on A

- **Better heuristic:**
 If $h_1(n) < h_2(n) \leq h^*(n)$ for all non-goal nodes, h_2 is a better heuristic than h_1

- If A_1^* uses h_1, A_2^* uses h_2,
 - every node expanded by A_2^* is also expanded by A_1^*
 - So A_1 expands at least as many nodes as A_2^*

We say that A_2^* is better informed than A_1^*
Quick Terminology Check

<table>
<thead>
<tr>
<th>Question</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is (f(n))?</td>
<td>An evaluation function that gives...
A cost estimate of...
The distance from (n) to (G)</td>
</tr>
<tr>
<td>What is (h(n))?</td>
<td>A heuristic function that...
Encodes domain knowledge about...
The search space</td>
</tr>
<tr>
<td>What is (h^*(n))?</td>
<td>A heuristic function that gives the...
True cost to reach goal from (n)
Why don’t we just use that?</td>
</tr>
<tr>
<td>What is (g(n))?</td>
<td>The path cost of getting from (S) to (n)
describes the “spent” costs of the current search</td>
</tr>
</tbody>
</table>
A* Search

- Idea: avoid expanding paths that are already expensive
 - Combines costs-so-far with expected-costs

- Evaluation function $f(n) = g(n) + h(n)$
 - $g(n) =$ cost so far to reach n
 - $h(n) =$ estimated cost from n to goal
 - $f(n) =$ estimated total cost of path through n to goal

- A* is complete iff
 - Branching factor is finite
 - Every operator has a fixed positive cost

- A* is admissible iff
 - $h(n)$ is admissible
A* Example 1

A\text{ad}

366=0+366
A* Example 1
A* Example 1

Example graph showing the A* algorithm for finding the shortest path from Arad to other cities.
A* Example 1
A* Example 1
A* Example 1
Algorithm A*

- Algorithm A with constraint that $h(n) \leq h^*(n)$
 - $h^*(n)$ = true cost of the minimal cost path from n to a goal.

- Therefore, $h(n)$ is an **underestimate** of the distance to the goal

- $h()$ is **admissible** when $h(n) \leq h^*(n)$
 - Guarantees optimality

- A* is **complete** whenever the branching factor is finite, and every operator has a fixed positive cost

- A* is **admissible**
Example Search Space Revisited

parent pointer

start state

arc cost

h value

g value

goal state
Example Search Space Revisited
Example

<table>
<thead>
<tr>
<th></th>
<th>$g(n)$</th>
<th>$h(n)$</th>
<th>$f(n)$</th>
<th>$h^*(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>A1</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>B 5</td>
<td>4</td>
<td>9</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>C 8</td>
<td>3</td>
<td>11</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>D 4</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>E 8</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>G 9</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

- $h^*(n)$ is the (hypothetical) perfect heuristic.
- Since $h(n) \leq h^*(n)$ for all n, h is admissible.
- Optimal path = S B G with cost 9.
Greedy Search

\[f(n) = h(n) \]

<table>
<thead>
<tr>
<th>Node</th>
<th>Expanded</th>
<th>List</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>{ S(8) }</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>{ C(3) B(4) A(8) }</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>{ G(0) B(4) A(8) }</td>
<td></td>
</tr>
</tbody>
</table>

- Solution path found is S C G, 3 nodes expanded.
- Fast!! But NOT optimal.
A* Search

\[f(n) = g(n) + h(n) \]

<table>
<thead>
<tr>
<th>node exp.</th>
<th>nodes list</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>{A(9) B(9) C(11)}</td>
</tr>
<tr>
<td>A</td>
<td>{B(9) G(10) C(11) D(\infty) E(\infty)}</td>
</tr>
<tr>
<td>B</td>
<td>{G(9) G(10) C(11) D(\text{inf}) E(\infty)}</td>
</tr>
<tr>
<td>G</td>
<td>{C(11) D(\infty) E(\infty)}</td>
</tr>
</tbody>
</table>

- Solution path found is S B G, 4 nodes expanded..
- Still pretty fast, and optimal
Proof of the Optimality of A*

- Assume that A* has selected G_2, a goal state with a suboptimal solution ($g(G_2) > f^*$).
- We show that this is impossible.
 - Choose a node n on the optimal path to G.
 - Because $h(n)$ is admissible, $f(n) \leq f^*$.
 - If we choose G_2 instead of n for expansion, $f(G_2) \leq f(n)$.
 - This implies $f(G_2) \leq f^*$.
 - G_2 is a goal state: $h(G_2) = 0, f(G_2) = g(G_2)$.
 - Therefore $g(G_2) \leq f^*$
 - Contradiction.
Admissible heuristics

E.g., for the 8-puzzle:

\[h_1(n) = \text{number of misplaced tiles} \]

\[h_2(n) = \text{total Manhattan distance} \]

\[h_1(S) = \text{?} \]

\[h_2(S) = \text{?} \]
Admissible heuristics

E.g., for the 8-puzzle:

- \(h_1(n) \) = number of misplaced tiles
- \(h_2(n) \) = total Manhattan distance
 (i.e., # of squares each tile is from desired location)

- \(h_1(S) = 8 \)
- \(h_2(S) = 3+1+2+2+2+3+3+2 = 18 \)
Dealing with Hard Problems

- For large problems, A* often requires too much space.
- Two variations conserve memory: IDA* and SMA*
 - IDA* – iterative deepening A*
 - uses successive iteration with growing limits on f. For example,
 - A* but don’t consider any node n where $f(n) > 10$
 - A* but don’t consider any node n where $f(n) > 20$
 - A* but don’t consider any node n where $f(n) > 30$, ...
 - SMA* – Simplified Memory-Bounded A*
 - uses a queue of restricted size to limit memory use.
 - throws away the “oldest” worst solution.
What’s a Good Heuristic?

- If $h_1(n) < h_2(n) \leq h^*(n)$ for all n, then:
 - Both are admissible
 - h_2 is strictly better than (dominates) h_1.

- How do we find one?

1. **Relaxing the problem:**
 - Remove constraints to create a (much) easier problem
 - Use the solution cost for this problem as the heuristic function

2. **Combining heuristics:**
 - Take the max of several admissible heuristics
 - Still have an admissible heuristic, and it’s better!
3. Use statistical estimates to compute h
 - May lose admissibility

4. Identify good features, then use a learning algorithm to find a heuristic function
 - Also may lose admissibility
 - Why are these a good idea, then?
 - Machine learning can give you answers you don’t “think of”
 - Can be applied to new puzzles without human intervention
 - Often work
Some Examples of Heuristics?

• 8-puzzle? Manhattan distance
• Driving directions? Straight line distance
• Crossword puzzle?
• Making a medical diagnosis?
Apply the following to search this space. At each search step, show:
the current node being expanded, \(g(n) \) (path cost so far), \(h(n) \) (heuristic estimate), \(f(n) \) (evaluation function), and \(h^*(n) \) (true goal distance).

Depth-first search
Breadth-first search
Uniform-cost search
A* search
Greedy search
In-class Exercise: Creating Heuristics

8-Puzzle

Start State

Goal State

Missionaries and Cannibals

Remove 5 Sticks

N-Queens

Water Jug Problem

Route Planning

Missionary1
Missionary2
Missionary3
Cannibal1
Cannibal2
Cannibal3
Boat
Summary: Informed Search

- **Best-first search**: general search where the *minimum-cost nodes* (according to some measure) are expanded first.

- **Greedy search**: uses *minimal estimated cost* $h(n)$ to the goal state as measure. Reduces search time but is neither complete nor optimal.

- **A* search**: combines UCS and greedy search
 - $f(n) = g(n) + h(n)$
 - A* is complete and optimal, but space complexity is high.
 - Time complexity depends on the quality of the heuristic function.

- **IDA* and SMA*** reduce the memory requirements of A*.