
Slides adapted with thanks from: Dr. Marie desJardin

Artificial Intelligence
Class 3: Search (Ch. 3.1–3.3)

Dr. Cynthia Matuszek – CMSC 671
Some material adopted from notes by Charles R. Dyer, University of Wisconsin-Madison

Bookkeeping

•  HW 1, pt III
•  Intro to Python
•  Sets, Tuples, Lists, Dictionaries, …

•  If you need resources, ask us!

•  Pre-reading for today
•  3.1 intro, 3.1.1, skim 3.3

•  Reading after class
•  3.1-3.3

2

Today’s Class

•  Goal-based agents

•  Representing states and operators

•  Example problems

•  Generic state-space search algorithm

Everything in AI comes down to search.

Goal: understand search, and understand how.

Pre-Reading Review

•  What is search (a.k.a. state-space search)?

•  What are these concepts in search?
•  Initial state
•  Actions / transition model
•  State space graph
•  Step cost / path cost
•  Goal test (cf. goal)
•  Solution / optimal solution

•  What is an open-loop system?

•  What is the difference between expanding and generating a state?

•  What is the frontier (a.k.a. open list)?

Representing Actions

•  Actions here are:
•  Discrete events
•  That occur at an instant of time

•  For example:
•  State: “Mary is in class”
•  Action “Go home”
•  New state: “At home”

•  There is no representation of a state where she is in
between (i.e., in the state of “going home”).

Representing Actions

•  Number of actions / operators depends on
representation used in describing a state
•  8-puzzle: could specify 4 possible moves for each of the 8

tiles: 4*8=32 operators.
•  Or, could specify four moves for the "blank" square:

4 operators

•  Careful representation can simplify a problem!

Representing States

•  What information about the world sufficiently describes
all relevant aspects to solving the goal?

•  That is: what knowledge must be in a state description
to adequately describe the current state of the world?

•  The size of a problem is usually described in terms of
the number of states that are possible
•  Tic-Tac-Toe has about 39 states.
•  Checkers has about 1040 states.
•  Rubik's Cube has about 1019 states.
•  Chess has about 10120 states in a typical game.

Closed World Assumption

•  We will generally use the Closed World
Assumption:

 “All necessary information about a problem
 domain is available in each percept so that each
 state is a complete description of the world.”

•  No incomplete information at any point in time.

Some Example Problems

•  Toy problems and micro-worlds
•  8-Puzzle

• Missionaries and Cannibals
• Cryptarithmetic

• Remove 5 Sticks
• Water Jug Problem

•  Real-world problems

8-Puzzle

 Given an initial configuration of 8 numbered tiles on
a 3 x 3 board, move the tiles in such a way so as to
produce a desired goal configuration of the tiles.

8 puzzle

•  State: 3 x 3 array configuration of the tiles on the
board

•  Operators:
•  Move blank square Left, Right, Up or Down.

•  This is a more efficient encoding of the operators!

•  Initial State: Start-configuration of the board.

•  Goal: Some configuration of the board.

The 8-Queens Problem

 Place eight
queens on a

chessboard such
that no queen
can reach any

other

Missionaries and Cannibals

3 missionaries, 3 cannibals, and 1 boat

•  Goal: Move everyone across the river.

•  Constraint: Missionaries can never
be outnumbered on banks.

•  State: configuration of missionaries and cannibals and
boat on each side of river.

•  Operators: Move boat containing some set of
occupants across the river (in either direction) to the
other side.

Remove 5 Sticks

•  Given the following
configuration of sticks,
remove exactly 5 sticks
in such a way that the
remaining
configuration forms
exactly 3 squares.

Some Real-World Problems

•  Route finding

•  Touring (traveling salesman)

•  Logistics

•  VLSI layout

•  Robot navigation

•  Learning

Knowledge Representation Issues

•  What’s in a state?
•  Is the color of the boat relevant to solving Missionaries

and Cannibals problem?

•  Is sunspot activity relevant to predicting the stock market?

•  What to represent is a very hard problem!
•  Usually left to the system designer to specify.

•  What level of abstraction to describe the world?
•  Too fine-grained and we “miss the forest for the trees”

•  Too coarse-grained and we miss critical information

Knowledge Representation Issues

•  Number of states depends on
•  Representation

•  Level of abstraction

•  In the Remove-5-Sticks problem:
•  If we represent individual sticks, then there are 17-

choose-5 possible ways of removing 5 sticks (6188)

•  If we represent the “squares” defined by 4 sticks, there are
6 squares initially and we must remove 3

•  So, 6-choose-3 ways of removing 3 squares (20)

Formalizing Search in a State Space

•  A state space is a
graph (V, E):
•  V is a set of nodes

•  E is a set of arcs
•  Each arc is directed

from a node to
another node

•  How does that
work for 8-puzzle?

Formalizing Search in a State Space

•  V: A node is a data structure that contains a state
description plus other information such as the
parent of the node, the name of the operator that
generated the node from that parent, and other
bookkeeping data

•  E: Each arc corresponds to an instance of one of
the operators. When the operator is applied to the
state associated with the arc's source node, then the
resulting state is the state associated with the arc's
destination node

Formalizing Search II

•  Each arc has a fixed, positive cost
•  Corresponding to the cost of the operator

•  What is “cost” of doing that action?

•  Each node has a set of successor nodes
•  Corresponding to all operators (actions) that can apply at

source node’s state

•  Expanding a node is generating successor nodes, and
adding them (and associated arcs) to the state-space graph

Formalizing Search II

•  One or more nodes are
designated as start
nodes

•  A goal test predicate is
applied to a state to
determine if its
associated node is a goal
node

Water Jug Problem

Name Con
d.

Transition Effect

Empty5 – (x,y)→(0,y) Empty 5-gal. jug

Empty2 – (x,y)→(x,0) Empty 2-gal. jug

2to5 x ≤ 3 (x,2)→(x
+2,0)

Pour 2-gal. into
5-gal.

5to2 x ≥ 2 (x,
0)→(x-2,2)

Pour 5-gal. into
2-gal.

5to2part y < 2 (1,y)→(0,y
+1)

Pour partial 5-
gal. into 2-gal.

 Given a full 5-gallon jug
and an empty 2-gallon
jug, the goal is to fill the
2-gallon jug with exactly
one gallon of water.

•  State = (x,y), where x is
the number of gallons of
water in the 5-gallon jug
and y is # of gallons in
the 2-gallon jug

•  Initial State = (5,0)

•  Goal State = (*,1), where
* means any amount

Operator table

3, 2

2, 2

1, 2

4, 2

0, 2

3, 1

2, 1

1, 1

4, 1

0, 1

5, 0

3, 0

2, 0

1, 0

4, 0

0, 0

Empty2

Empty5

2to5

5to2

5to2part

Water jug state space

3, 2

2, 2

1, 2

4, 2

0, 2

3, 1

2, 1

1, 1

4, 1

0, 1

5, 0

3, 0

2, 0

1, 0

4, 0

0, 0

Water jug solution

Formalizing Search III

•  State-space search is the process of searching
through a state space for a solution by making
explicit a sufficient portion of an implicit state-
space graph to find a goal node
•  Initially V={S}, where S is the start node

•  When S is expanded, its successors are generated; those
nodes are added to V and the arcs are added to E
•  This process continues until a goal node is found

•  It isn’t usually practical to represent entire space

Formalizing search IV

•  Each node implicitly or explicitly represents a
partial solution path (and cost of the partial
solution path) from the start node to the given node.
•  In general, from a node there are many possible paths (and

therefore solutions) that have this partial path as a prefix

State-Space Search Algorithm
function	general-search	(problem,	QUEUEING-FUNCTION)	
;;	problem	describes	start	state,	operators,	goal	test,	
;;				and	operator	costs	
;;	queueing-function	is	a	comparator	function	that		
;;				ranks	two	states	
;;	general-search	returns	either	a	goal	node	or	failure	
	
nodes	=	MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))	
		loop	
					if	EMPTY(nodes)	then	return	"failure"	
					node	=	REMOVE-FRONT(nodes)	
					if	problem.GOAL-TEST(node.STATE)	succeeds	
								then	return	node	
					nodes	=	QUEUEING-FUNCTION(nodes,	EXPAND(node,	
													problem.OPERATORS))	
	end	
					;;	Note:	The	goal	test	is	NOT	done	when	nodes	are	generated	
					;;	Note:	This	algorithm	does	not	detect	loops	

Key procedures to be defined

•  EXPAND	
•  Generate all successor

nodes of a given node

•  GOAL-TEST	
•  Test if state satisfies goal

conditions

•  QUEUEING-FUNCTION	
•  Used to maintain a ranked

list of nodes that are
candidates for expansion

Algorithm Bookkeeping

•  Typical node data structure includes:
•  State at this node

•  Parent node (no loops!)

•  Operator applied to get to this node

•  Depth of this node (number of operator
applications since initial state)

•  Cost of the path (sum of each operator
application so far)

Some Issues

•  Search process constructs a search tree, where:
•  Root is the initial state and

•  Leaf nodes are nodes that are either:
•  Not yet expanded (i.e., they are in the list “nodes”) or

•  Have no successors (i.e., they're “dead ends”, because no operators
can be applied, but they are not goals)

•  Search tree may be infinite
•  Even for small search space

•  How?

Some Issues

•  Return a path or a node depending on problem
•  In 8-queens return a node; in 8-puzzle return a path

•  What about Missionaries & Cannibals?

•  Changing definition of Queueing-Function ⇒
different search strategies
•  How do you choose what to expand next?

Evaluating Search Strategies

•  Completeness:
•  Guarantees finding a solution if one exists

•  Time complexity:
•  How long (worst or average case) does it take to find a solution?
•  Usually measured in number of states visited/nodes expanded

•  Space complexity:
•  How much space is used by the algorithm?
•  Usually measured in maximum size of the “nodes” list during search

•  Optimality/Admissibility
•  If a solution is found, is it guaranteed to be optimal (the solution with

minimum cost)?

