

Exam Topics

• Multi-Agent Systems

- Knowledge
 - Knowledge-Based Agents
 - Knowledge Representation
 - First-Order Logic
 - Inference
- Planning
 - State spaces
 - PO Planning
 - Probabilistic Planning

- Machine Learning
 - Decision Trees
 - Classification
 - Reinforcement Learning
 - Clustering
 - Bayes' Nets
- Applications
 - Robotics
 - Vision and Deep Learning
 - Natural Language

Knowledge Representation

- Ontologies
 - What would an ontology of "living things" look like?
 - Graphically? As a formal representation?

Semantic Nets

- Give an eight-node, nine-arc network about food
 - Graphically? As a formal representation?
- Types of relationships
 - Predicates: return *true* or *false* (a truth value)
 - Functions: return a *value*
 - Common types: is-a, part-of, kind-of, member-of
 - Keep individuals (e.g., Einstein) and groups (e.g., scientists) straight

Reasoning and Inference

- Given a formally represented world
 - Agents and their behaviors
 - Goals
 - State spaces
- What is inference?
- What kinds of inference can you do?
 - Forward Chaining
 - Backward Chaining

Planning

- Classical Planning
- Partial-order planning
- Probabilistic planning

Planning Problem

- Find a sequence of actions [operations] that achieves a goal when executed from the initial world state.
- That is, given:
 - A set of operator descriptions (possible primitive actions by the agent)
 - An initial state description
 - A goal state (description or predicate)
- Compute a **plan**, which is
 - A sequence of operator instances [operations]
 - Executing them in initial state → state satisfying description of goal-state

Planning as Inference

At(Home) $\land \neg$ Have(Milk) $\land \neg$ Have(Drill) At(Home) \land Have(Milk) \land Have(Drill)

- Knowledge Base for MilkWorld
 - What do we have? Not have?
 - How does one "have" things? (2 rules recommended)
 - Where are drills sold?
 - Where is milk sold?
 - What actions do we have available?

What does that mean?

- We must evaluate each sequence of actions
 "Utility"
- Based on what we believe about events
 But we can replan throughout
- In practice, we define (or learn) a *policy*.
 I'm at X. What's best at X?
 - And does it matter how I got there? No this is a Markovian problem.
- Value Iteration?17.13, 17.17

- Supervised vs. Unsupervised
 - What is classification?
 - What is clustering?
 - Exploitation v. Exploration
 - K-Means, EM, and failure modes

Reinforcement Learning

• Reinforcement learning systems

• Learn **series** of actions or decisions, rather than a single decision

31

- Based on feedback given at the end of the series
- A reinforcement learner has
 - A goal
 - Carries out trial-and-error search
 - Finds the best paths toward that goal

Clustering

- Given some instances with examples
 - But no labels!
 - Unsupervised learning the instances do not include a "class"
- Group instances such that:
 - Examples within a group (cluster) are <u>similar</u>
 - Examples in different groups (cluster) are <u>different</u>
- According to some *measure of similarity*, or **distance metric**.
 - Finding the right **features** and **distance metric** are important!

EM Summary

- Basically a probabilistic K-Means.
- Has many of same advantages and disadvantages
 - Results are easy to understand
 - Have to choose k ahead of time
- Useful in domains where we would prefer the likelihood that an instance can belong to more than one cluster
 - Natural language processing for instance