
1

Cleanup, Review,
and Q/A

Bookkeeping

•  Final exam, 12/20 10:30am-12:30pm, this room.

•  Review Session: this Friday, 12/16, 6pm-8pm
•  If you can’t make that time, see posted slides.

•  Policy on Student Exam Load: (paraphrased)
•  No more than two final exams in one day. Recommended:

alternate arrangements for the second exam.

•  If you have an 8:00-10:00 exam and something after 12,
tell me soon.

2

Exam Topics

•  Multi-Agent Systems

•  Knowledge
•  Knowledge-Based Agents

•  Knowledge Representation

•  First-Order Logic

•  Inference

•  Planning
•  State spaces

•  PO Planning

•  Probabilistic Planning

•  Machine Learning
•  Decision Trees

•  Classification

•  Reinforcement Learning

•  Clustering

•  Bayes’ Nets

•  Applications
•  Robotics

•  Vision and Deep Learning

•  Natural Language

Knowledge Representation

•  Ontologies
•  What would an ontology of “living things” look like?

•  Graphically? As a formal representation?

•  Semantic Nets
•  Give an eight-node, nine-arc network about food

•  Graphically? As a formal representation?

•  Types of relationships
•  Predicates: return true or false (a truth value)
•  Functions: return a value
•  Common types: is-a, part-of, kind-of, member-of
•  Keep individuals (e.g., Einstein) and groups (e.g., scientists)

straight

3

Ontology: Living Things

•  Ontologies are…
•  Taxonomic

•  Pyramidal
(generally)

•  Interconnected

•  Capture semantic
(meaningful)
relationships

•  What other meaningful
relationships are here?

LivingThing

Fish BirdsMammals

kind-of

DaisyDuck

kind-of kind-of

kind-of

is-a

Humans

Mary

is-a

??

??

Ontology as Text

•  Statements
•  kind-of(Fish, LivingThing)
•  kind-of(Humans, Mammals)
•  is-a(Mary, Human)
•  is-a(Mammals, Phylum)
•  disjoint(Fish, Mammals)

•  Rules
•  disjoint(Fish, Mammals)
•  disjoint(Mammals, Birds) …

OR…
•  is-a(X,Phylum) ^ is-a(Y,Phylum) ^

(not-equal(X, Y) à disjoint(X, Y)

LivingThing

Fish BirdsMammals

kind-of

DaisyDuck

kind-of kind-of

kind-of

is-a

Humans

Mary

is-a

dis-�
joint

??

4

Semantic Networks

•  The ISA (is-a) or AKO (a-kind-
of) relation is often used to link
instances to classes, classes to
superclasses

•  Some links (e.g. hasPart) are
inherited along ISA paths.

•  The semantics of a semantic net
can be informal or very formal
•  often defined at the implementation

level

isa

isa

isa isa
Robin

Bird

Animal

Red Rusty

hasPart

Wing

Semantic Net: Food

•  Give an eight-node, nine-arc network about food.

•  8 and 9 are minimum

5

Reasoning and Inference

•  Given a formally represented world
•  Agents and their behaviors

•  Goals

•  State spaces

•  What is inference?

•  What kinds of inference can you do?
•  Forward Chaining

•  Backward Chaining

Forward Chaining

sneeze(Lise) ß infer truth of

•  Find and apply relevant rules

cat(Y) ∧ allergic-cats(X) → allergies(X) ∧ cat(Felix)
 →
cat(Felix) ∧ allergic-cats(X) → allergies(X) ∧ allergic-cats(Lise)
 →
allergies(Lise) ∧ allergies(X) → sneeze(X)
 →
sneeze(Lise) ✓

Knowledge Base
1. Allergies lead to sneezing.

 allergies(X) → sneeze(X)
2. Cats cause allergies if
allergic to cats.

 cat(Y) ∧ allergic-cats(X)
 → allergies(X)
3. Felix is a cat.

 cat(Felix)
4. Lise is allergic to cats.

 allergic-cats(Lise)
variable binding

(query)

add new
sentence
to KB

6

Last Time: Inference

sneeze(Lise) ß query

•  Backward Chaining: apply rules
that end with the goal

allergies(X) → sneeze(X) + sneeze(Lise)
 new query: allergies(Lise)?

cat(Y) ∧ allergic-cats(X) → allergies(X) + allergies(Lise)
 new query: cat(Y) ∧ allergic-cats(Lise)?

cat(Felix) + cat(Y) ∧ allergic-cats(Lise)
 new sentence: cat(Felix) ∧ allergic-cats(Lise) ✓

Knowledge Base
1. Allergies lead to sneezing.

 allergies(X) → sneeze(X)
2. Cats cause allergies if
allergic to cats.

 cat(Y) ∧ allergic-cats(X)
 → allergies(X)
3. Felix is a cat.

 cat(Felix)
4. Lise is allergic to cats.

 allergic-cats(Lise)

variable binding

Uses of Inference

•  Ontologies
•  Conclude new information

•  Sanity check

•  Semantic Networks
•  Conclude new information

•  Build out network

•  Maintain probabilities

•  Planning

7

Planning

•  Classical Planning

•  Partial-order planning

•  Probabilistic planning

Planning Problem

•  Find a sequence of actions [operations] that achieves a
goal when executed from the initial world state.

•  That is, given:
•  A set of operator descriptions (possible primitive actions by the

agent)
•  An initial state description
•  A goal state (description or predicate)

•  Compute a plan, which is
•  A sequence of operator instances [operations]
•  Executing them in initial state à state satisfying description of

goal-state

8

With “Situations”

•  Initial state and Goal state with explicit situations
At(Home, S0) ∧ ¬Have(Milk, S0) ∧ ¬Have(Bananas, S0) ∧ ¬Have(Drill,

S0)
(∃s) At(Home,s) ∧ Have(Milk,s) ∧ Have(Bananas,s) ∧ Have(Drill,s)

•  Operators:
∀(a,s) Have(Milk,Result(a,s)) ⇔ �

 ((a=Buy(Milk) ∧ At(Grocery,s)) ∨ �
 (Have(Milk, s) ∧ a ≠ Drop(Milk)))

∀(a,s) Have(Drill,Result(a,s)) ⇔ �
 ((a=Buy(Drill) ∧ At(HardwareStore,s)) ∨ �
 (Have(Drill, s) ∧ a ≠ Drop(Drill)))

With Implicit Situations

•  Initial state
At(Home) ∧ ¬Have(Milk) ∧ ¬Have(Bananas) ∧ ¬Have(Drill)

•  Goal state
At(Home) ∧ Have(Milk) ∧ Have(Bananas) ∧ Have(Drill)

•  Operators:
Have(Milk) ⇔ �

 ((a=Buy(Milk) ∧ At(Grocery)) ∨ (Have(Milk) ∧ a ≠ Drop(Milk)))
Have(Drill) ⇔ �

 ((a=Buy(Drill) ∧ At(HardwareStore)) ∨ (Have(Drill) ∧ a ≠ Drop(Drill)))

9

At(Home) ∧ ¬Have(Milk) ∧ ¬Have(Drill)

At(Home) ∧ Have(Milk) ∧ Have(Drill)

•  Knowledge Base for MilkWorld
•  What do we have? Not have?

•  How does one “have” things? (2 rules recommended)

•  Where are drills sold?
•  Where is milk sold?

•  What actions do we have available?

Planning as Inference

Planning as
Inference

At(Home) ∧ ¬Have(Milk) ∧ ¬Have(Drill)

At(Home) ∧ Have(Milk) ∧ Have(Drill)

•  Knowledge Base for MilkWorld
•  What do we have? Not have?

•  How does one “have” things? (2 rules recommended)

•  Where are drills sold?
•  Where is milk sold?

•  What actions do we have available?

Knowledge Base
1. We’re currently home.

2. We don’t have anything.

3. One has things when they are bought
at appropriate places.

4. One has things one already has and
hasn’t dropped.

5. Hardware stores sell drills.

6. Groceries sell milk.

7. Our actions are:

10

Inference

•  What two things do we
combine first (by number)?
•  How about 1 and 7(a)?

•  action 1 = Go(GS)
•  action 2 = Buy(Drill)

•  What then changes in the
knowledge base?
•  ¬At(X)

•  At(GS)

Knowledge Base
1. We’re currently home.

 At(Home)
2. We don’t have anything.
 ¬Have(Drill)
 ¬Have(Milk)
3. One has things when they are bought
at appropriate places.

 Have(X) ⇔
 (At(Y) ∧ (Sells(X,Y) ∧ (a=Buy(X))
4. You have things you already have and
haven’t dropped.
 (Have(X) ∧ a ≠ Drop(X)))
5. Hardware stores sell drills.
 (Sells(Drill,HWS)
6. Groceries sell milk.
 (Sells(Milk,GS)
7. Our actions are:
 At(X) ∧ Go(Y) => At(Y) ∧ ¬At(X)
 Drop(X) => ¬Have(X)
 Buy(X) [defined above]

And so on…

Partial-Order Planning

11

Partial-Order Planning

•  A linear planner builds a plan as a totally ordered
sequence of plan steps

•  A non-linear planner (aka partial-order planner) builds
up a plan as a set of steps with some temporal constraints
•  E.g., S1<S2 (step S1 must come before S2)

•  Partially ordered plan (POP) refined by either:
•  adding a new plan step, or
•  adding a new constraint to the steps already in the plan.

•  A POP can be linearized (converted to a totally ordered
plan) by topological sorting*

* from search - R&N 223

Non-Linear Plan: Steps

•  A non-linear plan consists of
(1) A set of steps {S1, S2, S3, S4…}

Each step has an operator description, preconditions and post-conditions

(2) A set of causal links { … (Si,C,Sj) …}
(One) goal of step Si is to achieve precondition C of step Sj

(3) A set of ordering constraints { … Si<Sj … }
if step Si must come before step Sj

12

Back to Milk
World…

•  Actions:
1.  Go(GS)

2.  Buy(Milk)

3.  Go(HWS)

4.  Buy(Drill)
5.  Go(Home)

•  Does ordering matter?

Knowledge Base
1. We’re currently home.

 At(Home) ß this was not true throughout!
2. We have milk and a drill.
 Have(Drill)

 Have(Milk)
None of these has changed.
3. One has things when they are bought at
appropriate places.

 Have(X) ⇔
 (At(Y) ∧ (Sells(X,Y) ∧ (a=Buy(X))
4. You have things you already have and haven’t
dropped.
 (Have(X) ∧ a ≠ Drop(X)))
5. Hardware stores sell drills.
 (Sells(Drill,HWS)
6. Groceries sell milk.
 (Sells(Milk,GS)
7. Our actions are:
 At(X) ∧ Go(Y) => At(Y) ∧ ¬At(X)
 Drop(X) => ¬Have(X)
 Buy(X) [defined above]

Specifying Steps and Constraints

•  Go(X)
•  Preconditions: ¬At(X)

•  Postconditions: At(X)

•  Buy(T)
•  Preconditions: At(Z) ^ Sells(T, Z)

•  Postconditions: Have(T)

•  Causal Links: Go(X) à At(X)

•  Ordering Constraints: Go(X) < At(X)

13

Eventually…

1.  Go(GS)
2.  Buy(Milk)
3.  Go(HWS)
4.  Buy(Drill)
5.  Go(Home)

•  Ordering is not strict.

•  Go(HWS) preconditions:
•  ¬At(HWS) ^ ¬Have(Drill)

•  So, 1<2, 3<4

•  How many non-loopy
paths – i.e., plans?

At(Home)
At(HWS)
¬Have(Milk)
¬Have(Drill)

At(Home)
At(GS)
¬Have(Milk)
¬Have(Drill)

At(Home)
¬Have(Milk)
¬Have(Drill)

Go(HWS) Go(GS) Go(Home)Go(Home)

Buy(Drill) Buy(Milk)

… …

Probabilistic Planning

•  Core idea: instead of actions having single effects:
•  a1: A à B a2: B à C

•  Actions have possible effects, requiring a table:
•  a1: A à B: 80% a2: B à C: 80%
•  a1: A à A: 20% a2: B à B: 20%

•  At each plan step, propagate probabilities forward
•  Where am I now, with what probability?

14

•  In each state, the possible actions are U, D, R, and L
•  The effect of U is as follows (transition model):

•  With probability 0.8, the robot moves up one square (if the
 robot is already in the top row, then it does not move)
•  With probability 0.1, the robot moves right one square (if the
 robot is already in the rightmost row, then it does not move)
•  With probability 0.1, the robot moves left one square (if the
 robot is already in the leftmost row, then it does not move)

• D, R, and L have similar probabilistic effects

Transition Model in Practice

2

3

1

y

4 3 2 1 x

•  In each state, possible actions
 are U, D, R, and L
•  The transition model) of U is:

•  up: 0.8
•  left: 0.1
•  right: 0.1

•  D, R, and L have similar
 probabilistic effects

Transition Model in Practice

Plan: U, U, R, R, RGoal

Trap

2

3

1

y

4 3 2 1 x

•  Where am I?

•  Step 1: (1,2): 0.8 (1,1): 0.1 (2,1): 0.1

•  Step 2: (1,2) à (1,3): 0.8.

 (1,2) à (1,2): 0.1 .

 (1,2) à (1,2): 0.1 .

 (1,1) à (1,1): 0.1.

 (1,1) à (1,2): 0.8.

 (1,1) à (2,1): 0.1.

 n …
•  Now: What are the odds I’m at 1,3? 1,2?

15

What does that mean?

•  We must evaluate each sequence of actions
•  “Utility”

•  Based on what we believe about events
•  But we can replan throughout

•  In practice, we define (or learn) a policy.
•  I’m at X. What’s best at X?

•  And does it matter how I got there? No – this is a Markovian problem.

•  Value Iteration?
•  17.13, 17.17

Machine Learning

•  Supervised vs. Unsupervised
•  What is classification?

•  What is clustering?

•  Exploitation v. Exploration

•  K-Means, EM, and failure modes

16

Reinforcement Learning

•  Reinforcement learning systems
•  Learn series of actions or decisions, rather than a single

decision

•  Based on feedback given at the end of the series

•  A reinforcement learner has
•  A goal

•  Carries out trial-and-error search

•  Finds the best paths toward that goal

31

Reinforcement Learning

•  A typical reinforcement learning system is an active
agent, interacting with its environment.

•  It must balance
•  Exploration: trying different actions and sequences of

actions to discover which ones work best
•  Exploitation (achievement): using sequences which have

worked well so far

•  Must learn successful sequences of actions in an
uncertain environment

32

17

Clustering

•  Given some instances with examples
•  But no labels!

•  Unsupervised learning — the instances do not include a “class”

•  Group instances such that:
•  Examples within a group (cluster) are similar

•  Examples in different groups (cluster) are different

•  According to some measure of similarity, or distance
metric.
•  Finding the right features and distance metric are important!

Example

18

Example

•  What are some two-way
clusters we might get? Three
way?
•  cats/dogs
•  photos/drawings
•  tan/white/striped

•  What are some good
features for cats/dogs?
•  Ear pointiness, tail length, …
•  Distance metric for tail length?

•  What about the others?

18

K-Means Clustering

●  Provide number of desired clusters, k.

●  Randomly choose k instances as seeds.

●  Form initial clusters based on these seeds.

●  Calculate the centroid of each cluster.

●  Iterate, repeatedly reallocating instances to closest
centroids and calculating the new centroids

●  Stop when clustering converges or after a fixed
number of iterations.

19

K Means Example (K=2)

Pick seeds

Reassign clusters

Compute centroids

x
x

Reassign clusters

x
x x x Compute centroids

Reassign clusters

Converged!

K-Means

•  Tradeoff: more clusters (better focused clusters) and too
many clusters (overfitting)
a)  What would we likely get for 3 clusters? 4?

•  Results can vary based on random seed selection
b)  What if these were our starting points?

•  The algorithm is sensitive to outliers
c)  Yike.

(a) (b) (c)

20

EM Summary

•  Basically a probabilistic K-Means.

•  Has many of same advantages and disadvantages
•  Results are easy to understand

•  Have to choose k ahead of time

•  Useful in domains where we would prefer the
likelihood that an instance can belong to more than
one cluster
•  Natural language processing for instance

