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Cleanup, Review, 
and Q/A 

Bookkeeping 

•  Final exam, 12/20 10:30am-12:30pm, this room. 

•  Review Session: this Friday, 12/16, 6pm-8pm 
•  If  you can’t make that time, see posted slides. 

•  Policy on Student Exam Load: (paraphrased) 
•  No more than two final exams in one day. Recommended: 

alternate arrangements for the second exam. 

•  If  you have an 8:00-10:00 exam and something after 12, 
tell me soon. 
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Exam Topics 

•  Multi-Agent Systems 

•  Knowledge 
•  Knowledge-Based Agents 

•  Knowledge Representation 

•  First-Order Logic 

•  Inference 

•  Planning 
•  State spaces  

•  PO Planning 

•  Probabilistic Planning 

•  Machine Learning 
•  Decision Trees 

•  Classification 

•  Reinforcement Learning 

•  Clustering 

•  Bayes’ Nets 

•  Applications 
•  Robotics 

•  Vision and Deep Learning 

•  Natural Language 

Knowledge Representation 

•  Ontologies 
•  What would an ontology of  “living things” look like? 

•  Graphically? As a formal representation? 

•  Semantic Nets 
•  Give an eight-node, nine-arc network about food 

•  Graphically? As a formal representation? 

•  Types of  relationships 
•  Predicates: return true or false (a truth value) 
•  Functions: return a value 
•  Common types: is-a, part-of, kind-of, member-of  
•  Keep individuals (e.g., Einstein) and groups (e.g., scientists) 

straight 
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Ontology: Living Things 

•  Ontologies are… 
•  Taxonomic 

•  Pyramidal  
(generally) 

•  Interconnected 

•  Capture semantic  
(meaningful)  
relationships 

•  What other meaningful 
relationships are here? 

LivingThing

Fish BirdsMammals

kind-of

DaisyDuck

kind-of kind-of

kind-of

is-a

Humans

Mary

is-a

??

??

Ontology as Text 

•  Statements
•  kind-of(Fish, LivingThing)
•  kind-of(Humans, Mammals)
•  is-a(Mary, Human)
•  is-a(Mammals, Phylum)
•  disjoint(Fish, Mammals)

•  Rules
•  disjoint(Fish, Mammals)
•  disjoint(Mammals, Birds) …

OR…
•  is-a(X,Phylum) ^ is-a(Y,Phylum) ^ 

(not-equal(X, Y) à disjoint(X, Y)

LivingThing

Fish BirdsMammals

kind-of

DaisyDuck

kind-of kind-of

kind-of

is-a

Humans

Mary

is-a

dis-�
joint

??
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Semantic Networks 

•  The ISA (is-a) or AKO (a-kind-
of) relation is often used to link 
instances to classes, classes to 
superclasses 

•  Some links (e.g. hasPart) are 
inherited along ISA paths. 

•  The semantics of a semantic net 
can be informal or very formal 
•  often defined at the implementation 

level 

isa 

isa 

isa isa 
Robin 

Bird 

Animal 

Red Rusty 

hasPart 

Wing 

Semantic Net: Food 

•  Give an eight-node, nine-arc network about food. 

•  8 and 9 are minimum 
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Reasoning and Inference 

•  Given a formally represented world 
•  Agents and their behaviors 

•  Goals 

•  State spaces 

•  What is inference? 

•  What kinds of  inference can you do? 
•  Forward Chaining 

•  Backward Chaining 

Forward Chaining 

sneeze(Lise) ß infer truth of

•  Find and apply relevant rules  
 
 
cat(Y) ∧ allergic-cats(X) → allergies(X) ∧ cat(Felix)  
   →
cat(Felix) ∧ allergic-cats(X) → allergies(X) ∧ allergic-cats(Lise) 
   →
allergies(Lise) ∧ allergies(X) → sneeze(X) 
   →
sneeze(Lise)  ✓
 

Knowledge Base
1. Allergies lead to sneezing.

 allergies(X) → sneeze(X)
2. Cats cause allergies if 
allergic to cats.

 cat(Y) ∧ allergic-cats(X) 
       → allergies(X) 
3. Felix is a cat.

 cat(Felix) 
4. Lise is allergic to cats.

 allergic-cats(Lise) 
variable binding

(query)

add new 
sentence 
to KB
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Last Time: Inference 

sneeze(Lise) ß query

•  Backward Chaining: apply rules 
that end with the goal  

allergies(X) → sneeze(X)  +  sneeze(Lise) 
 new query: allergies(Lise)? 

cat(Y) ∧ allergic-cats(X) → allergies(X)  +  allergies(Lise) 
   new query: cat(Y) ∧ allergic-cats(Lise)? 

cat(Felix)  +  cat(Y) ∧ allergic-cats(Lise) 
   new sentence: cat(Felix) ∧ allergic-cats(Lise)   ✓

Knowledge Base
1. Allergies lead to sneezing.

 allergies(X) → sneeze(X)
2. Cats cause allergies if 
allergic to cats.

 cat(Y) ∧ allergic-cats(X) 
       → allergies(X) 
3. Felix is a cat.

 cat(Felix) 
4. Lise is allergic to cats.

 allergic-cats(Lise) 

variable binding

Uses of  Inference 

•  Ontologies 
•  Conclude new information 

•  Sanity check 

•  Semantic Networks 
•  Conclude new information 

•  Build out network 

•  Maintain probabilities 

•  Planning 
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Planning 

•  Classical Planning 

•  Partial-order planning 

•  Probabilistic planning 

Planning Problem 

•  Find a sequence of actions [operations] that achieves a 
goal when executed from the initial world state. 

•  That is, given: 
•  A set of operator descriptions (possible primitive actions by the 

agent)  
•  An initial state description 
•  A goal state (description or predicate) 

•  Compute a plan, which is  
•  A sequence of operator instances [operations] 
•  Executing them in initial state à state satisfying description of 

goal-state  
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With “Situations” 

•  Initial state and Goal state with explicit situations 
At(Home, S0) ∧ ¬Have(Milk, S0) ∧ ¬Have(Bananas, S0) ∧ ¬Have(Drill, 

S0) 
(∃s) At(Home,s) ∧ Have(Milk,s) ∧ Have(Bananas,s) ∧ Have(Drill,s)

•  Operators: 
∀(a,s) Have(Milk,Result(a,s)) ⇔ �

  ((a=Buy(Milk) ∧ At(Grocery,s)) ∨ �
   (Have(Milk, s) ∧ a ≠ Drop(Milk))) 

∀(a,s) Have(Drill,Result(a,s)) ⇔ �
  ((a=Buy(Drill) ∧ At(HardwareStore,s)) ∨ �
   (Have(Drill, s) ∧ a ≠ Drop(Drill))) 

With Implicit Situations 

•  Initial state 
At(Home) ∧ ¬Have(Milk) ∧ ¬Have(Bananas) ∧ ¬Have(Drill)

•  Goal state 
At(Home) ∧ Have(Milk) ∧ Have(Bananas) ∧ Have(Drill)

•  Operators: 
Have(Milk) ⇔ �

  ((a=Buy(Milk) ∧ At(Grocery)) ∨ (Have(Milk) ∧ a ≠ Drop(Milk)))
Have(Drill) ⇔ �

  ((a=Buy(Drill) ∧ At(HardwareStore)) ∨ (Have(Drill) ∧ a ≠ Drop(Drill))) 
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At(Home) ∧ ¬Have(Milk) ∧ ¬Have(Drill)

At(Home) ∧ Have(Milk) ∧ Have(Drill)

•  Knowledge Base for MilkWorld 
•  What do we have? Not have? 

•  How does one “have” things? (2 rules recommended) 

•  Where are drills sold? 
•  Where is milk sold? 

•  What actions do we have available? 

Planning as Inference 

Planning as  
Inference 

At(Home) ∧ ¬Have(Milk) ∧ ¬Have(Drill)

At(Home) ∧ Have(Milk) ∧ Have(Drill)

•  Knowledge Base for MilkWorld 
•  What do we have? Not have? 

•  How does one “have” things? (2 rules recommended) 

•  Where are drills sold? 
•  Where is milk sold? 

•  What actions do we have available? 

Knowledge Base
1. We’re currently home.
 
2. We don’t have anything.
 
 
3. One has things when they are bought 
at appropriate places.
 
  
4. One has things one already has and 
hasn’t dropped.

5. Hardware stores sell drills.

6. Groceries sell milk.

7. Our actions are: 
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Inference 

•  What two things do we 
combine first (by number)? 
•  How about 1 and 7(a)? 

•  action 1 = Go(GS) 
•  action 2 = Buy(Drill) 

•  What then changes in the 
knowledge base? 
•  ¬At(X) 

•  At(GS)  

Knowledge Base
1. We’re currently home.

 At(Home) 
2. We don’t have anything.
    ¬Have(Drill) 
    ¬Have(Milk)   
3. One has things when they are bought 
at appropriate places.

 Have(X) ⇔ 
      (At(Y) ∧ (Sells(X,Y) ∧ (a=Buy(X))  
4. You have things you already have and 
haven’t dropped.
    (Have(X) ∧ a ≠ Drop(X))) 
5. Hardware stores sell drills.
    (Sells(Drill,HWS) 
6. Groceries sell milk.
    (Sells(Milk,GS)
7. Our actions are: 
    At(X) ∧ Go(Y) => At(Y) ∧ ¬At(X) 
    Drop(X) =>  ¬Have(X) 
    Buy(X) [defined above] 

And so on…

Partial-Order Planning 
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Partial-Order Planning 

•  A linear planner builds a plan as a totally ordered 
sequence of plan steps 

•  A non-linear planner (aka partial-order planner) builds 
up a plan as a set of steps with some temporal constraints  
•  E.g., S1<S2 (step S1 must come before S2)  

•  Partially ordered plan (POP) refined by either: 
•  adding a new plan step, or 
•  adding a new constraint to the steps already in the plan. 

•  A POP can be linearized (converted to a totally ordered 
plan) by topological sorting*  

* from search - R&N 223

Non-Linear Plan: Steps 

•  A non-linear plan consists of 
(1) A set of steps {S1, S2, S3, S4…}  

Each step has an operator description, preconditions and post-conditions 

(2) A set of causal links { … (Si,C,Sj) …} 
(One) goal of step Si is to achieve precondition C of step Sj 

(3) A set of ordering constraints { … Si<Sj … } 
if step Si must come before step Sj 
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Back to Milk  
World… 

•  Actions: 
1.  Go(GS) 

2.  Buy(Milk) 

3.  Go(HWS) 

4.  Buy(Drill) 
5.  Go(Home) 

•  Does ordering matter? 

Knowledge Base
1. We’re currently home.

 At(Home) ß this was not true throughout!
2. We have milk and a drill.
    Have(Drill) 

 Have(Milk)
None of these has changed.
3. One has things when they are bought at 
appropriate places.

 Have(X) ⇔ 
      (At(Y) ∧ (Sells(X,Y) ∧ (a=Buy(X))  
4. You have things you already have and haven’t 
dropped.
    (Have(X) ∧ a ≠ Drop(X))) 
5. Hardware stores sell drills.
    (Sells(Drill,HWS) 
6. Groceries sell milk.
    (Sells(Milk,GS)
7. Our actions are: 
    At(X) ∧ Go(Y) => At(Y) ∧ ¬At(X) 
    Drop(X) =>  ¬Have(X) 
    Buy(X) [defined above] 

Specifying Steps and Constraints 

•  Go(X) 
•  Preconditions: ¬At(X) 

•  Postconditions: At(X) 

•  Buy(T) 
•  Preconditions: At(Z) ^ Sells(T, Z) 

•  Postconditions: Have(T) 

•  Causal Links: Go(X) à At(X) 

•  Ordering Constraints: Go(X) < At(X) 
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Eventually… 

1.  Go(GS) 
2.  Buy(Milk) 
3.  Go(HWS) 
4.  Buy(Drill) 
5.  Go(Home) 

•  Ordering is not strict. 

•  Go(HWS) preconditions: 
•  ¬At(HWS) ^ ¬Have(Drill)

•  So, 1<2, 3<4 

•  How many non-loopy 
paths – i.e., plans? 

At(Home)
At(HWS)
¬Have(Milk)
¬Have(Drill)

At(Home)
At(GS)
¬Have(Milk)
¬Have(Drill)

At(Home)
¬Have(Milk)
¬Have(Drill)

Go(HWS) Go(GS) Go(Home)Go(Home)

Buy(Drill) Buy(Milk)

… … 

Probabilistic Planning 

•  Core idea: instead of  actions having single effects: 
•  a1: A à B  a2: B à C 

•  Actions have possible effects, requiring a table: 
•  a1: A à B: 80%  a2: B à C: 80% 
•  a1: A à A: 20%  a2: B à B: 20% 

•  At each plan step, propagate probabilities forward 
•  Where am I now, with what probability? 
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•  In each state, the possible actions are U, D, R, and L 
•  The effect of U is as follows (transition model): 

•  With probability 0.8, the robot moves up one square (if the  
   robot is already in the top row, then it does not move) 
•  With probability 0.1, the robot moves right one square (if the 
   robot is already in the rightmost row, then it does not move) 
•  With probability 0.1, the robot moves left one square (if the 
   robot is already in the leftmost row, then it does not move) 

• D, R, and L have similar probabilistic effects 

Transition Model in Practice 

2 

3 

1 

y 

4 3 2 1 x 

•  In each state, possible actions  
  are U, D, R, and L 
•  The transition model) of U is: 

•  up: 0.8 
•  left: 0.1 
•  right: 0.1 

•  D, R, and L have similar  
  probabilistic effects 

Transition Model in Practice 

Plan: U, U, R, R, RGoal 

Trap 

2 

3 

1 

y 

4 3 2 1 x 

•  Where am I? 

•  Step 1: (1,2): 0.8   (1,1): 0.1   (2,1): 0.1 

•  Step 2: (1,2) à (1,3):  0.8. 

        (1,2) à (1,2):  0.1 . 

        (1,2) à (1,2):  0.1 . 

        (1,1) à (1,1):  0.1. 

        (1,1) à (1,2):  0.8. 

        (1,1) à (2,1):  0.1. 

 n           … 
•  Now: What are the odds I’m at 1,3? 1,2? 
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What does that mean? 

•  We must evaluate each sequence of  actions 
•  “Utility” 

•  Based on what we believe about events 
•  But we can replan throughout 

•  In practice, we define (or learn) a policy. 
•  I’m at X. What’s best at X? 

•  And does it matter how I got there? No – this is a Markovian problem. 

•  Value Iteration? 
•  17.13, 17.17 

Machine Learning 

•  Supervised vs. Unsupervised 
•  What is classification? 

•  What is clustering? 

•  Exploitation v. Exploration 

•  K-Means, EM, and failure modes 
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Reinforcement Learning 

•  Reinforcement learning systems 
•  Learn series of  actions or decisions, rather than a single 

decision 

•  Based on feedback given at the end of  the series 

•  A reinforcement learner has 
•  A goal 

•  Carries out trial-and-error search  

•  Finds the best paths toward that goal 

31 

Reinforcement Learning 

•  A typical reinforcement learning system is an active 
agent, interacting with its environment. 

•  It must balance 
•  Exploration: trying different actions and sequences of  

actions to discover which ones work best 
•  Exploitation (achievement): using sequences which have 

worked well so far 

•  Must learn successful sequences of actions in an 
uncertain environment 

32 
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Clustering 

•  Given some instances with examples 
•  But no labels! 

•  Unsupervised learning — the instances do not include a “class” 

•  Group instances such that: 
•  Examples within a group (cluster) are similar 

•  Examples in different groups (cluster) are different 

•  According to some measure of  similarity, or distance 
metric. 
•  Finding the right features and distance metric are important! 

Example 
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Example 

•  What are some two-way 
clusters we might get? Three 
way? 
•  cats/dogs 
•  photos/drawings 
•  tan/white/striped 

•  What are some good 
features for cats/dogs? 
•  Ear pointiness, tail length, … 
•  Distance metric for tail length? 

•  What about the others? 
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K-Means Clustering 

●  Provide number of  desired clusters, k. 

●  Randomly choose k instances as seeds. 

●  Form initial clusters based on these seeds. 

●  Calculate the centroid of  each cluster. 

●  Iterate, repeatedly reallocating instances to closest 
centroids and calculating the new centroids 

●  Stop when clustering converges or after a fixed 
number of  iterations.  
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K Means Example (K=2) 

Pick seeds 

Reassign clusters 

Compute centroids 

x 
x 

Reassign clusters 

x 
x x x Compute centroids 

Reassign clusters 

Converged! 

K-Means 

•  Tradeoff: more clusters (better focused clusters) and too 
many clusters (overfitting) 
a)  What would we likely get for 3 clusters? 4? 

•  Results can vary based on random seed selection 
b)  What if  these were our starting points? 

•  The algorithm is sensitive to outliers 
c)  Yike. 

(a) (b) (c)
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EM Summary 

•  Basically a probabilistic K-Means. 

•  Has many of  same advantages and disadvantages 
•  Results are easy to understand  

•  Have to choose k ahead of  time 

•  Useful in domains where we would prefer the 
likelihood that an instance can belong to more than 
one cluster 
•  Natural language processing for instance 


