Robotics and Human-Robot Interaction
AI Class 27 (no reading)

Bookkeeping

- Closing in! Almost there!
- Doodle poll for review date (tentative: 16th)
- Last schedule slips
 - Phase II: due 11:59 Dec 12
- Final survey
 - How did the project go? Who contributed what?
 - Due before final
- TTBOMK, all Phase II materials are up
Today’s Class

- What’s a robot (really)?
- What parts do they have?
- What are they used for?
- What kind of AI do they need?
- HRI
- Future Questions

Familiar Robots

- Ava. Ex Machina: 2016
- Optimus Prime. Transformers: 2007-current
- Wall•E: 2008
Some Current Robots

What is a Robot?

• “A robot is a reprogrammable, multifunctional manipulator designed to move … through variable programmed motions for the performance of a variety of tasks.” (Robot Institute of America)

• “A robot is a one-armed, blind idiot with limited memory and which cannot speak, see, or hear.”

• **In practice:** robotics intersects with any space in which computers move into the physical world.
What Are They Good At?

- What is hard for humans is easy for robots.
 - Repetitive tasks.
 - Continuous operation.
 - Complicated calculations.
 - Referring to huge databases/knowledge sources.

- What is easy for a human is (sometimes) hard for robots.
 - Reasoning.
 - Adapting to new situations.
 - Flexible to changing requirements.
 - Integrating multiple sensors.
 - Resolving conflicting data.
 - Synthesizing unrelated information.
 - Creativity.

What Should They Do?

- Boring and/or repetitive
 - welding car frames
 - part pick and place
 - manufacturing parts

- High precision / speed
 - electronics testing
 - surgery
 - precision machining

- Dangerous
 - chemical spill cleanup
 - disarming bombs

- Inaccessible
 - space exploration
 - disaster cleanup

- All of the Above
 - Continuous reef monitoring
 - Military surveillance
Categories of Robot Systems

- **Manipulators**
 - Anchored somewhere
 - Factory assembly lines
 - International Space Station
 - Hospitals
 - Common industrial robots

- **Mobile Robots**
 - Move around environment
 - UGVs, UAVs, AUVs, UUVs
 - Mars rovers, delivery bots, ocean explorers

- **Mobile Manipulators**
 - Both move and manipulate
 - Packbot, humanoid robots

Subsystems

Robots have:

- **Sensors**
 - Some way of *detecting* the world

- **Effectors**
 - Some way of *affecting* things in the world
 - Manipulation
 - Mobility

- **Control/Software**
Sensors

- Perceive the world
 - **Passive** sensors capture signals from environment. (cameras)
 - **Active** sensors probe the environment (sonar)
- What are they sensing?
 - The environment (range finders, obstacle detection)
 - The robot's location (gps, wireless stations)
 - Robot's own internals: *proprioceptive sensors*
 - Stop and think about that one for a moment. Close your eyes - where's your hand? Move it - where is it now?

What Are Sensors Used For?

- Feedback
 - Closed-loop robots use sensors in conjunction with actuators to gain higher accuracy – servo motors.
- Decision making
 - Mobile robotics
 - Telepresence
 - Search and rescue
 - Pick and place (with vision)
- Human interaction
Some Sensors

- Optical
 - Laser / radar
 - 3D
 - Color spectrum
- Pressure
- Temperature
- Chemical
- Motion & Accelerometer
- Acoustic
 - Ultrasonic
 - E-field Sensing

Actuators / Effectors

- Take some kind of action in the world
- Involve movement of robot or subcomponent of robot
- Robot actions include
 - Pick and place: Move items between points
 - Continuous path control: Move along a programmable path
 - Sensory: Employ sensors for feedback (e-field sensing)
Mobility

- Legs
- Wheels
- Tracks
- Crawls
- Rolls

Control: The Brain

- Open loop, i.e., no feedback, deterministic
 - Instructions
 - Rules
- Closed loop, i.e., feedback
 - Learn
 - Adapt
Where Is AI Needed?

- **Sensing:**
 - Interpreting incoming information
 - Machine vision, signal processing
 - Language understanding

- **Actuation:**
 - What to do with manipulators and how
 - Motion planning and path planning

- **Control:**
 - Managing large search spaces and complexity
 - Accelerating masses produce vibration, elastic deformations in links.
 - Torques, stresses on end actuator
 - Feedback loops

- **Firmware and software:**
 - Especially with more intelligent approaches!

Robotic Perception

- Sensing isn’t enough: need to *act* on data sensed
- Data are noisy
- Environment is dynamic and partially observable
- Must be mapped into an internal *representation*
- Good representations:
 - Contain enough information for good decisions
 - Are structured for efficient updating
 - Are a natural (usable) mapping between representation and real world
Belief State

• Belief state: model of the state of the environment (including the robot)
 • X: set of variables describing the environment
 • Xₜ: state at time t
 • Zₜ: observation received at time t
 • Aₜ: action taken after Zₜ is observed
• After Aₜ, compute new belief state Xₜ₊₁
• Probabilistic, because uncertainty in both Xₜ and Zₜ.

Some Perception Problems

• Localization: where is the robot, where are other things in the environment
 • Landmarks
 • Range scans
• Mapping: no map given, robot must determine both environment and position.
 • SLAM: Simultaneous localization and mapping
• Probabilistic approaches typical
 • Especially machine learning!
• What about common sense? Learning?
Software Architectures

• Low-level, reactive control
 • Bottom-up
 • Sensor results directly trigger actions

• Model-based, deliberative planning
 • Top-down
 • Actions are triggered based on planning around a state model

• Which is an *intelligence* approach?
 • A? B? Neither? Both?

Low-Level, Reactive Control

• Augmented finite state machines
• Sensed inputs and a clock determine next state
• Build bottom up, from individual motions
• Subsumption architecture synchronizes AFSMs, combines values from separate AFSMs.
• Advantages: simple to develop, fast
• Disadvantages: Fragile for bad sensor data, don't support integration of complex data over time.
• Typically used for simple tasks, like following a wall or moving a leg.
Model-Based Deliberative Planning

- **Belief State model**
 - Current State, Goal State
 - Any of planning techniques
 - Typically use probabilistic methods
- **Pros:**
 - Can handle uncertain measurements and complex integrations
 - Can be responsive to change or problems.
- **Cons:**
 - Slow!
 - Developing models, e.g., driving, is cumbersome.
- **Typically used for high-level actions**
 - Whether to move and in which direction.

Hybrid Architectures

- Usually, actually doing anything requires both reactive and deliberative processing.
- **Typical architecture is three-layer:**
 - Reactive Layer: low-level control, tight sensor-action loop, decision cycle of milliseconds
 - Deliberative layer: global solutions to complex tasks, model-based planning, decision cycle of minutes
 - Executive layer: glue. Accepts directions from deliberative layer, sequences actions for reactive layer, decision cycle of a second
Performance Metrics

- Speed and acceleration
- Resolution (in space)
- Working volume
- Accuracy
- Cost

...plus all the evaluation functions for any AI system.

Where Are Robots *Now*?

- Healthcare and personal care
 - surgical aids, intelligent walkers, eldercare
- Personal services
 - Roomba!
 - Information kiosks, lawn mowers, golf caddies, museum guides
- Entertainment
 - sports (robotic soccer)
- Human augmentation
 - walking machines, exoskeletons, robotic hands, etc.
And More…

- Industry and Agriculture
 - assembly, welding, painting, harvesting, mining, pick-and-place, packaging, inspection, ...
- Transportation
 - Autonomous helicopters, pilot assistance, materials movement
- Cars (DARPA Grand Challenge, Urban Challenge)
 - Antilock brakes, lane following, collision detection
- Exploration and Hazardous environments
 - Mars rovers, search and rescue, underwater and mine exploration, mine detection
- Military
 - Reconnaissance, sentry, S&R, combat, EOD
- Household
 - Cleaning, mopping, ironing, tending bar, entertainment, telepresence/surveillance

Tomorrow’s Problems

- Mechanisms
 - Morphology: What should robots look like?
 - Novel actuators/sensors
- Estimation and Learning
 - Reinforcement Learning
 - Graphical Models
 - Learning by Demonstration
- Manipulation (grasping)
 - What does the far side of an object look like? How heavy is it? How hard should it be gripped? How can it rotate? Regrasping?
And more...

- Medical robotics
 - Autonomous surgery
 - Eldercare
- Biological Robots
 - Biomimetic robots
 - Neurobotics
- Navigation
 - Collision avoidance
 - SLAM/Exploration

Self-X Robots

- Self-feeding
 - Literally
 - Electrically
- Self-replicating
- Self-repairing
- Self-assembly
- Self-organization
- Self-reconfiguration
Human-Robot Interaction

- Social robots
 - In care contexts
 - In home contexts
 - In industrial contexts
- Comprehension
 - Natural language
 - Grounded knowledge acquisition
 - Roomba: “Uh-oh”
- Basic idea: Human-centric environments

Why?

- Robots are getting smaller, cheaper, and more ubiquitous
- Humans need to interact with and instruct them, naturally
 - Language, gesture, demonstration, …
- Key requirements:
 - Language understanding learned from data
 - Follow instructions in a previously unseen world
 - Learn to parse natural language into robot-usable commands
Robots in Human Spaces

- Robots now:
 - Expensive
 - Complex
 - Special-purpose

- Environments
 - Dedicated
 - Constrained

- Use and Management
 - Controlled by trained experts
 - Slow and expensive to reconfigure/repurpose

Some current problems

HRI
World Learning
Ethical Questions
Human-Robot Interaction

- How do *humans* handle human interaction?
 - Assumptions about retention and understanding
 - Anthropomorphization

- How do robots make it easier?
 - Apologize vs. back off
 - Convey intent
 - Cultural context (implicit vs. explicit communication)

Use Cases: Games
Direction Following

- **Grounded Language Acquisition:**
 - "Understanding" = transforming natural language into semantically meaningful representations
 - Mapping that information to perceived world

- **Learn a parser**
 - Produce robot-executable commands from NL instructions

Direction Following

```
(turn-right)
(do-n-times 2
  (until (exists left-loc
    (move-to forward)))
  (turn-left))
```

“Turn right, then take your second left.”

Novel Concepts

- **Grounded Language Acquisition:**
 - "Understanding" = transforming natural language into semantically meaningful representations
 - Mapping that information to perceived world

- **But, this assumes we already know what things exist to map to!**

- **World modeling:** learn new concepts from interactions

This is a red thing that you can eat, but don't eat these blue ones
Learning is required

- Robotic systems see new physical things
- Jointly model perceptions and language to create a new, consistent world model
- Learn previously unknown attributes from descriptions
 - Yellow: new word describing new idea

"All these blocks are yellow."

Please fetch the blue encyclopedia on the desk in my office.
Why?

- Some concepts are hard without situated learning
 - Green, round, …
 - “Turning towards” something
- And the world is complicated.
What is the Parent Saying?

Watch the video, then describe what the parent is saying to the child, in complete sentences.

• Pretend you are a parent teaching a child about something.
• The question is:

How does the parent describe this group of objects?

Your answer should be the sentence(s) the parent said while pointing to these things.

“This one’s an orange ball.”

\[\lambda x . \text{orange}(x) \wedge \text{spheroid}(x) \]

Multimodal Interactions

• Larger data set of interactions
• Capturing:
 • Speech
 • Gesture
 • RGB-D
• How do data sources combine?
• Can we model
 • …world?
 • …language?
 • …user intention?
Multimodal Human Input

“These are green objects seeming like vegetables. This one is a ... a cucumber ... or a dull oval thing. And this one is a pepper. Like slightly rounded ... high cone.”

What Should They Do?

- Boring and/or repetitive
 - welding car frames
 - part pick and place
 - manufacturing parts
- High precision / speed
 - electronics testing
 - surgery
 - precision machining
- Dangerous
 - chemical spill cleanup
 - disarming bombs
- Inaccessible
 - space exploration
 - disaster cleanup
- All of the Above
 - Continuous reef monitoring
 - Military surveillance
What Shouldn’t They Do?

- What decisions can be made without human supervision?
- May machine-intelligent systems make mistakes (like humans can)?
- May intelligent systems gamble when uncertain (as humans do)?
- Can (or should) intelligent systems exhibit personality?
- Can (or should) intelligent systems express emotion?
- How much information should the machine give the human?

Jobs For Robots

<table>
<thead>
<tr>
<th>Elder care</th>
<th>Military surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Law enforcement</td>
<td>Military monitoring</td>
</tr>
<tr>
<td>Politics</td>
<td>Domestic surveillance</td>
</tr>
<tr>
<td>Space exploration</td>
<td>Unsupervised surgery</td>
</tr>
<tr>
<td>Underwater exploration</td>
<td>Unsupervised driving</td>
</tr>
<tr>
<td>Monitoring</td>
<td>Child care</td>
</tr>
</tbody>
</table>
The Future

- Robots that can learn.
- Robots that interact smoothly with people.
- Robots that do ticklish things autonomously.
- Robots that make other robots.
- Robots with “strong” AI.

..?