Robotics and Human-Robot Interaction

AI Class 27 (no reading)

Slides based in part on www.jhu.edu/virtlab/course-info/ei/ppt/robotics-part1.ppt and -part2.ppt and Intro to AI, Dr. Paula Matuszek, Villanova 2013

Bookkeeping

- Closing in! Almost there!
- Doodle poll for review date (tentative: 16th)
- Last schedule slips
 - Phase II: due 11:59 Dec 12
- Final survey
 - How did the project go? Who contributed what?
 - Due before final
- TTBOMK, all Phase II materials are up

Today's Class

- What's a robot (really)?
- What parts do they have?
- What are they used for?
- What kind of AI do they need?
- HRI
- Future Questions

3

What is a Robot?

- "A robot is a reprogrammable, multifunctional manipulator designed to move ... through variable programmed motions for the performance of a variety of tasks." (Robot Institute of America)
- "A robot is a one-armed, blind idiot with limited memory and which cannot speak, see, or hear."
- **In practice:** robotics intersects with any space in which computers move into the physical world.

What Are They Good At?

- What is hard for humans is easy for robots.
 - Repetitive tasks.
 - Continuous operation.
 - Complicated calculations.
 - Referring to huge databases/knowledge sources.
- What is easy for a human is (sometimes) hard for robots.
 - Reasoning.
 - Adapting to new situations.
 - Flexible to changing requirements.
 - Integrating multiple sensors.
 - Resolving conflicting data.
 - Synthesizing unrelated information.
 - · Creativity.

What Should They Do?

- Boring and/or repetitive
 - welding car frames
 - part pick and place
 - manufacturing parts
- High precision / speed
 - electronics testing
 - surgery
 - precision machining

- Dangerous
 - chemical spill cleanup
 - disarming bombs
- Inaccessible
 - space exploration
 - disaster cleanup
- All of the Above
 - Continuous reef monitoring
 - Military surveillance

Categories of Robot Systems

- Manipulators
 - Anchored somewhere
 - Factory assembly lines
 - International Space Station
 - Hospitals
 - Common industrial robots
- Mobile Robots
 - Move around environment
 - UGVs, UAVs, AUVs, UUVs
 - Mars rovers, delivery bots, ocean explorers
- Mobile Manipulators
 - Both move and manipulate
 - Packbot, humanoid robots

Subsystems

Robots have:

- Sensors
 - Some way of *detecting* the world
- Effectors
 - Some way of *affecting* things in the world
 - Manipulation
 - Mobility
- Control/Software

Sensors

- · Perceive the world
 - Passive sensors capture signals from environment. (cameras)
 - **Active** sensors probe the environment (sonar)
- What are they sensing?
 - The environment (range finders, obstacle detection)
 - The robot's location (gps, wireless stations)
 - Robot's own internals: *proprioceptive* sensors
 - Stop and think about that one for a moment. Close your eyes where's your hand? Move it where is it now?

What Are Sensors Used For?

- Feedback
 - Closed-loop robots use sensors in conjunction with actuators to gain higher accuracy – servo motors.
 - Decision making
 - Mobile robotics
 - Telepresence
 - Search and rescue
 - Pick and place (with vision)
- Human interaction

Actuators / Effectors

- Take some kind of action in the world
- Involve movement of robot or subcomponent of robot
- Robot actions include

Optical

• 3D

Pressure

Acoustic

 Ultrasonic E-field Sensing

- Pick and place: Move items between points
- Continuous path control: Move along a programmable path
- Sensory: Employ sensors for feedback (e-field sensing)

Where Is AI Needed?

- Sensing:
 - Interpreting incoming information
 - Machine vision, signal processing
 - Language understanding
- Actuation:
 - What to do with manipulators and how
 - Motion planning and path planning

- Control:
 - Managing large search spaces and complexity
 - Accelerating masses produce vibration, elastic deformations in links.
 - Torques, stresses on end actuator
 - Feedback loops
- Firmware and software:
 - Especially with more intelligent approaches!

Robotic Perception

- Sensing isn't enough: need to act on data sensed
 - Data are noisy
 - Environment is dynamic and partially observable
- Must be mapped into an internal representation
- Good representations:
 - Contain enough information for good decisions
 - Are structured for efficient updating
 - Are a natural (usable) mapping between representation and real world

Belief State

- Belief state: model of the state of the environment (including the robot)
 - X: set of variables describing the environment
 - X_t: state at time t
 - Z_t: observation received at time t
 - At: action taken after Zt is observed
- After A_t, compute new belief state X_{t+1}
- Probabilistic, because uncertainty in both X_t and Z_t .

Some Perception Problems

- Localization: where is the robot, where are other things in the environment
 - Landmarks
 - Range scans
- Mapping: no map given, robot must determine both environment and position.
 - SLAM: Simultaneous localization and mapping
- Probabilistic approaches typical
 - Especially machine learning!
- What about common sense? Learning?

Software Architectures

- Low-level, reactive control
 - Bottom-up
 - Sensor results directly trigger actions
- Model-based, deliberative planning
 - Top-down
 - Actions are triggered based on planning around a state model
- Which is an *intelligence* approach?
 - A? B? Neither? Both?

Low-Level, Reactive Control

- Augmented finite state machines
- Sensed inputs and a clock determine next state
- Build bottom up, from individual motions
- Subsumption architecture synchronizes AFSMs, combines values from separate AFSMs.
- Advantages: simple to develop, fast
- Disadvantages: Fragile for bad sensor data, don't support integration of complex data over time.
- Typically used for simple tasks, like following a wall or moving a leg.

Model-Based Deliberative Planning

- Belief State model
 - · Current State, Goal State
 - Any of planning techniques
 - Typically use probabilistic methods
- Pros:
 - Can handle uncertain measurements and complex integrations
 - Can be responsive to change or problems.
- Cons:
 - Slow!
 - Developing models for, e.g., driving, is cumbersome.
- Typically used for high-level actions
 - Whether to move and in which direction.

Hybrid Architectures

- Usually, actually doing anything requires both reactive and deliberative processing.
- Typical architecture is three-layer:
 - Reactive Layer: low-level control, tight sensor-action loop, decision cycle of milliseconds
 - Deliberative layer: global solutions to complex tasks, model-based planning, decision cycle of minutes
 - Executive layer: glue. Accepts directions from deliberative layer, sequences actions for reactive layer, decision cycle of a second

Performance Metrics

- Speed and acceleration
- Resolution (in space)
- Working volume
- Accuracy
- Cost
- ...plus all the evaluation functions for any AI system.

Where Are Robots Now?

- Healthcare and personal care
 - surgical aids, intelligent walkers, eldercare
- Personal services
 - Roomba!
 - Information kiosks, lawn mowers, golf caddies, museum guides
- Entertainment
 - sports (robotic soccer)
- Human augmentation
 - walking machines, exoskeletons, robotic hands, etc.

And More...

- Industry and Agriculture
 - assembly, welding, painting, harvesting, mining, pickand-place, packaging, inspection, ...
- Transportation
 - Autonomous helicopters, pilot assistance, materials movement
- Cars (DARPA Grand Challenge, Urban Challenge)
 - Antilock brakes, lane following, collision detection

- Exploration and Hazardous environments
 - Mars rovers, search and rescue, underwater and mine exploration, mine detection
- Military
 - Reconnaissance, sentry, S&R, combat, EOD
- Household
 - Cleaning, mopping, ironing, tending bar, entertainment, telepresence/surveillance

Tomorrow's Problems

- Mechanisms
 - Morphology: What should robots look like?
 - Novel actuators/sensors
- Estimation and Learning
 - Reinforcement Learning
 - Graphical Models
 - Learning by Demonstration
- Manipulation (grasping)
 - What does the far side of an object look like? How heavy is it? How hard should it be gripped? How can it rotate? Regrasping?

And more...

- Medical robotics
 - Autonomous surgery
 - Eldercare
- Biological Robots
 - Biomimetic robots
 - Neurobotics
- Navigation
 - Collision avoidance
 - SLAM/Exploration

Self-X Robots

- Self-feeding
 - Literally
 - Electrically
- Self-replicating
- Self-repairing
- Self-assembly
- Self-organization
- Self-reconfiguration

Human-Robot Interaction

- Social robots
 - In care contexts
 - In home contexts
 - In industrial contexts
- Comprehension
 - Natural language
 - Grounded knowledge acquisition
 - Roomba: "Uh-oh"
 - Basic idea: Human-centric environments

Why?

- Robots are getting smaller, cheaper, and more ubiquitous
- Humans need to interact with and instruct them, naturally
 - Language, gesture, demonstration, ...
- Key requirements:
 - · Language understanding learned from data
 - Follow instructions in a previously unseen world
 - Learn to parse natural language into robot-usable commands

Robots in Human Spaces

- Robots now:
 - Expensive
 - Complex
 - Special-purpose
- Environments
 - Dedicated
 - Constrained
- Use and Management
 - Controlled by trained experts
 - Slow and expensive to reconfigure/repurpose

Some current problems

HRI World Learning Ethical Questions

Human-Robot Interaction

- How do humans handle human interaction?
 - Assumptions about retention and understanding
 - Anthropomorphization
- How do robots make it easier?
 - Apologize vs. back off
 - Convey intent
 - Cultural context (implicit vs. explicit communication)

Learning is required

- Robotic systems see new physical things
- Jointly model perceptions and language to create a new, consistent world model
- Learn previously unknown attributes from descriptions
 - Yellow: new word describing new idea

Multimodal Interactions

- Larger data set of interactions
- Capturing:
 - Speech
 - Gesture
 - RGB-D
- How do data sources combine?
- · Can we model
 - ...world?
 - · ...language?
 - · ...user intention?

Multimodal Human Input

"These are green objects seeming like vegetables. This one is a ... a cucumber ... or a dull oval thing. And this one is a pepper. Like slightly rounded ... high cone."

What Should They Do?

- Boring and/or repetitive
 - welding car frames
 - part pick and place
 - manufacturing parts
- High precision / speed
 - electronics testing
 - surgery
 - precision machining

- Dangerous
 - chemical spill cleanup
 - disarming bombs
- Inaccessible
 - space exploration
 - disaster cleanup
- All of the Above
 - Continuous reef monitoring
 - Military surveillance

What Shouldn't They Do?

- What decisions can be made without human supervision?
- May machine-intelligent systems make mistakes (like humans can)?
- May intelligent systems gamble when uncertain (as humans do)?
- Can (or should) intelligent systems exhibit personality?

HAL - 2001 Space Odyssey

- Can (or should) intelligent systems express emotion?
- How much information should the machine give the human?

Jobs For Robots

- Eldercare
- Law enforcement
- Politics
- Space exploration
- Underwater exploration
- Monitoring

- Military surveillance
- Military monitoring
- Domestic surveillance
- Unsupervised surgery
- Unsupervised driving
- Child care

The Future

- Robots that can learn.
- Robots that interact smoothly with people.
- Robots that do ticklish things autonomously.
- Robots that make other robots.
- Robots with "strong" AI.

...?

62