Clustering: k-means, the EM algorithm

Based partly on: Dr. P Matuszek, Dr. Mooney: www.cs.utexas.edu/~mooney/cs388/slides/TextClustering.ppt

Bookkeeping

• No HW 6
• Phase II
 • New eleusis.py, Adversary class
 • Summary:
 • Maintain a hand of 14 cards at all times
 • Call members of the Adversary class
 • Return a rule on demands; the person with the right rule gets a big bonus
• Suggestion: learn from others!
What is Clustering?

• Given some instances with data: group instances such that
 • examples within a group are similar
 • examples in different groups are different

• These groups are clusters

• Unsupervised learning — the instances do not include a class attribute.

Clustering Example
A Different Example

- How would you group
 - 'The price of crude oil has increased significantly'
 - 'Demand for crude oil outstrips supply'
 - 'Some people do not like the flavor of olive oil'
 - 'The food was very oily'
 - 'Crude oil is in short supply'
 - 'Oil platforms extract crude oil'
 - 'Canola oil is supposed to be healthy'
 - 'Iraq has significant oil reserves'
 - 'There are different types of cooking oil'

Another Example
Introduction

Clustering Basics

• Collect examples
• Compute similarity among examples **according to some metric**
• Group examples together such that
 • Examples within a cluster are similar
 • Examples in different clusters are different
• Summarize each cluster
• **Sometimes**: assign new instances to the most similar cluster
Measures of Similarity

- In order to do clustering we need some kind of measure of similarity.
- This is basically our “critic”
- Vector of values, depends on domain:
 - documents: bag of words, linguistic features
 - purchases: cost, purchaser data, item data
 - census data: most of what is collected
- Multiple different measures available

Measures of Similarity

- Semantic similarity (but that’s hard)
- Similar attribute **counts**
 - Number of attributes with the same value.
 - Appropriate for large, sparse vectors
 - Bag-of-Words: BoW
- More complex vector comparisons:
 - Euclidian Distance
 - Cosine Similarity
Euclidean Distance

- Euclidean distance: distance between two measures summed across each feature
 - Squared differences to give more weight to larger difference

\[\text{dist}(x_i, x_j) = \sqrt{(x_{i1}-x_{j1})^2 + (x_{i2}-x_{j2})^2 + \ldots + (x_{in}-x_{jn})^2} \]

Euclidian

- Calculate differences
 - Ears: pointy?
 - Muzzle: how many inches long?
 - Tail: how many inches long?

\[\text{dist}(x_1, x_2) = \sqrt{(0-1)^2 + (3-1)^2 + \ldots + (2-4)^2} = \sqrt{9} = 3 \]
\[\text{dist}(x_1, x_3) = \sqrt{(0-0)^2 + (3-3)^2 + \ldots + (2-3)^2} = \sqrt{1} = 1 \]
Cosine Similarity

- A measure of similarity between two vectors
- Measure the cosine of the angle between them
- Cosine = 1 when angle = 0
- Cosine < 1 otherwise
- As angle between vectors shortens, cosine angle approaches 1
- Meaning that the two vectors are getting closer, meaning that the similarity of whatever is represented by the vectors increases
Clustering Algorithms

• Flat
 • K means

• Hierarchical
 • Bottom up
 • Top down (not common)

• Probabilistic
 • Expectation Maximumization (E-M)

Partitioning (Flat) Algorithms

• Partitioning method
 • Construct a partition of n documents into a set of K clusters

• Given: a set of documents and the number K

• Find: a partition of K clusters that optimizes the chosen partitioning criterion
 • Globally optimal: exhaustively enumerate all partitions.
 • Usually too expensive.
 • Effective heuristic methods: K-means algorithm.

http://www.coe.umbc.edu/~nicholas/676/MSSlides/lecture17-clustering.ppt
K-Means Clustering

- Simplest hierarchical method, widely used
- Create clusters based on a centroid; each instance is assigned to the closest centroid
- K is given as a parameter
- Heuristic and iterative

K-Means Clustering

- Provide number of desired clusters, k.
- Randomly choose k instances as seeds.
- Form initial clusters based on these seeds.
- Calculate the centroid of each cluster.
- Iterate, repeatedly reallocating instances to closest centroids and calculating the new centroids
- Stop when clustering converges or after a fixed number of iterations.
K Means Example (K=2)

- Pick seeds
- Reassign clusters
- Compute centroids
- Reassign clusters
- Compute centroids
- Reassign clusters

Converged!

K-Means

- Tradeoff between having more clusters (better focus within each cluster) and having too many clusters. Overfitting again.

- Results can vary based on random seed selection.
 - Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings.

- The algorithm is sensitive to outliers
 - Data points that are far from other data points.
 - Could be errors in the data recording or some special data points with very different values.

http://www.csee.umbc.edu/~nicholas/676/MRSslides/lecture17-clustering.ppt
Problem!

• Poor clusters based on initial seeds

https://datasciencelab.wordpress.com/2014/01/15/improved-seeding-for-clustering-with-k-means/

Strengths of K-Means

• Strengths:
 • Simple: easy to understand and to implement
 • Efficient: Time complexity: $O(tkn)$,
 • where n is the number of data points,
 • k is the number of clusters, and
 • t is the number of iterations.
 • Since both k and t are small. k-means is considered a linear algorithm.
 • K-means is most popular clustering algorithm.
 • In practice, performs well, especially on text.

www.cs.uic.edu/~liub/teach/cs583-fall-05/CS583-unsupervised-learning.ppt
K-Means Weaknesses

• Must choose K
 • Poor choice can lead to poor clusters
• Clusters may differ in size or density
• All attributes are weighted
• Heuristic, based on initial random seeds; clusters may differ from run to run

Expectation Maximization (EM)

• **Probabilistic method for soft clustering**
• Assumes k clusters: \{c_1, c_2, \ldots, c_k\}
• “Soft” version of k-means
• Assumes a probabilistic model (such as Naive Bayes) of categories
 • Allows computing \(P(c_i | E)\) for each category, \(c_i\), for a given example, \(E\)
• So basic idea is that we are learning \(k\) classifications, but starting with unlabeled data which makes this _____ learning
EM Algorithm

- Iteratively learn **probabilistic categorization model** from **unsupervised data**
- Initially assume random assignment of examples to categories
 - “Randomly label” data
- Learn initial probabilistic model by estimating **model parameters** θ from randomly labeled data
- Iterate until convergence:
 - **Expectation (E-step):** Compute $P(c_i \mid E)$ for each example given the current model, and probabilistically re-label the examples based on these posterior probability estimates
 - **Maximization (M-step):** Re-estimate the model parameters, θ, from the probabilistically re-labeled data

EM

Initialize:

Assign random probabilistic labels to unlabeled data

[Image: EM_diagram.png]

EM

Initialize:
Give soft-labeled training data to a probabilistic learner

Prob. Learner

EM

Initialize:
Produce a probabilistic classifier

Prob. Learner

Prob. Classifier
EM

E Step:
Relabel unlabeled data using the trained classifier

- E Step:
- Relabel unlabeled data using the trained classifier

M step:
Retrain classifier on relabeled data

- M step:
- Retrain classifier on relabeled data

Continue EM iterations until probabilistic labels on unlabeled data converge.
EM Summary

• Basically a probabilistic K-Means.

• Has many of same advantages and disadvantages
 • Results are easy to understand
 • Have to choose k ahead of time

• Useful in domains where we would prefer the likelihood that an instance can belong to more than one cluster
 • Natural language processing for instance