Decision Making Under Uncertainty

CMSC 671, Fall 2016
Class \#23
material from Marie desJardin, Lise Getoor, Jean-Claude Latombe, and Daphne Koller

SEQUENTIAL DECISION MAKING UNDER UNCERTAINTY

Sequential Decision Making

- Finite Horizon
- Infinite Horizon

Simple Robot Navigation Problem

- In each state, the possible actions are $\mathrm{U}, \mathrm{D}, \mathrm{R}$, and L

Probabilistic Transition Model

- In each state, the possible actions are $\mathrm{U}, \mathrm{D}, \mathrm{R}$, and L
- The effect of U is as follows (transition model):
- With probability 0.8 , the robot moves up one square (if the robot is already in the top row, then it does not move)

Probabilistic Transition Model

- In each state, the possible actions are $\mathrm{U}, \mathrm{D}, \mathrm{R}$, and L
- The effect of U is as follows (transition model):
- With probability 0.8 , the robot moves up one square (if the robot is already in the top row, then it does not move)
- With probability 0.1 , the robot moves right one square (if the robot is already in the rightmost row, then it does not move)

Probabilistic Transition Model

- In each state, the possible actions are $\mathrm{U}, \mathrm{D}, \mathrm{R}$, and L
- The effect of U is as follows (transition model):
- With probability 0.8 , the robot moves up one square (if the robot is already in the top row, then it does not move)
- With probability 0.1 , the robot moves right one square (if the robot is already in the rightmost row, then it does not move)
- With probability 0.1 , the robot moves left one square (if the robot is already in the leftmost row, then it does not move)

Probabilistic Transition Model

- In each state, the possible actions are $\mathrm{U}, \mathrm{D}, \mathrm{R}$, and L
- The effect of U is as follows (transition model):
- With probability 0.8 , the robot moves up one square (if the robot is already in the top row, then it does not move)
- With probability 0.1 , the robot moves right one square (if the robot is already in the rightmost row, then it does not move)
- With probability 0.1 , the robot moves left one square (if the robot is already in the leftmost row, then it does not move)
-D, R, and L have similar probabilistic effects

Markov Property

The transition properties depend only on the current state, not on the previous history (how that state was reached)

Markov assumption generally: current state only ever depends on previous state (or finite set of previous states).

Sequence of Actions

Sequence of Actions

Histories

- Planned sequence of actions: (U, R)
- U has been executed
- R is executed
- 9 possible sequences of states - called histories
- 6 possible final states for the robot!

Probability of Reaching the Goal

Utility Function

- $[4,3]$ provides power supply
- $[4,2]$ is a sand area from which the robot cannot escape

Utility Function

- [4,3] provides power supply
- [4,2] is a sand area from which the robot cannot escape
- The robot needs to recharge its batteries

Utility Function

- $[4,3]$ provides power supply
- $[4,2]$ is a sand area from which the robot cannot escape
- The robot needs to recharge its batteries
- $[4,3]$ and $[4,2]$ are terminal states

Utility of a History

- $[4,3]$ provides power supply
- $[4,2]$ is a sand area from which the robot cannot escape
- The robot needs to recharge its batteries
- $[4,3]$ or $[4,2]$ are terminal states
- The utility of a history is defined by the utility of the last state (+1 or -1) minus $\mathrm{n} / 25$, where n is the number of moves
- Many utility functions possible, for many kinds of problems.

Utility of an Action Sequence

- Consider the action sequence (U, R) from $[3,2]$

Utility of an Action Sequence

- Consider the action sequence (U, R) from $[3,2]$
- A run produces one of 7 possible histories, each with some probability

Utility of an Action Sequence

- Consider the action sequence (U, R) from $[3,2]$
- A run produces one of 7 possible histories, each with some probability
- The utility of the sequence is the expected utility of the histories:

$$
\mathbf{U}=\Sigma_{\mathrm{h}} \mathbf{U}_{\mathrm{h}} \mathbf{P}(\mathrm{~h})
$$

Optimal Action Sequence

- Consider the action sequence (U, R) from $[3,2]$
- A run produces one of 7 possible histories, each with some probability
- The utility of the sequence is the expected utility of the histories:

$$
\mathbf{U}=\sum_{h} \mathbf{U}_{\mathrm{h}} \mathbf{P}(\mathrm{~h})
$$

- The optimal sequence is the one with maximal utility

Optimal Action Sequence

- Consider the action sequence (U, R) from $[3,2]$
- A run produc only if the sequence is executed blindly! pability
- The utility of
- The optimal sequence is the one with maximal utility
- But is the optimalaction sequence what we want to compute?

Reactive Agent Algorithm

Repeat: \quad Accessible or

- $s<$ sensed state
- If s is terminal then exit
- a \leftarrow choose action (given s)
- Perform a

Policy (Reactive/Closed-Loop Strategy)

- A policy Π is a complete mapping from states to actions

Reactive Agent Algorithm

Repeat:

- $\mathrm{s} \leftarrow$ sensed state
- If s is terminal then exit
- $a<\Pi(s)$
- Perform a

Optimal Policy

- A policy Π is a complet Note that $[3,2]$ is a "dangerous"
- The optimal policy Π^{*} i state that the optimal policy history (ending at a tel tries to avoid expected utilitv

Makes sense because of Markov property

Optimal Policy

- A policy Π is a comp

This problem is called a

- The optimal policy Γ Markov Decision Problem (MDP) history with maximal expected utilitty

How to compute Π^{*} ?

Additive Utility

- History $\mathrm{H}=\left(\mathrm{S}_{0}, \mathrm{~S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}\right)$
- The utility of H is additive iff:
$\mathbf{U}\left(\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}\right)=\mathbf{R}(0)+\mathbf{U}\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}\right)=\sum_{r} \mathbf{R}(\mathrm{i})$

Reward

Additive Utility

- History H = ($\left.\mathrm{s}_{0}, \mathrm{~S}_{1}, \ldots, \mathrm{~s}_{n}\right)$
- The utility of H is additive iff:

$$
\mathbf{U}_{\left(\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots, \mathrm{~s}_{n}\right)}=\mathbf{R}(0)+\mathbf{U}_{\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}\right)}=\Sigma \mathbf{R}_{(\mathrm{i})}
$$

- Robot navigation example:
- $\mathbf{R}_{(\mathrm{n})}=+1$ if $\mathrm{S}_{\mathrm{n}}=[4,3]$
- $\boldsymbol{R}(\mathrm{n})=-1$ if $\mathrm{S}_{\mathrm{n}}=[4,2]$
- $\mathbf{R}(\mathrm{i})=-1 / 2 \mathrm{if} \mathrm{i}=0, \ldots, \mathrm{n}-1$

Principle of Max Expected Utility

- History $\mathrm{H}=\left(\mathrm{s}_{0}, \mathrm{~S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}\right)$
- Utility of $\left.\mathrm{H}: ~ \mathrm{U}_{\left(\mathrm{s}_{0}, s_{1}, \ldots, s_{n}\right)}\right)=\sum \mathrm{R}_{(\mathrm{i})}$

First-step analysis \rightarrow
reminder! utility
of a sequence:
$\mathbf{U}=\Sigma_{\mathrm{h}} \mathbf{U}_{\mathrm{h}} \mathbf{P}(\mathrm{h})$

$$
\mathbf{U}(\mathrm{i})=\mathbf{R}(\mathrm{i})+\max _{\mathrm{a}} \sum_{\mathrm{k}} \mathbf{P}(\mathrm{k} \mid \mathrm{a} . \mathrm{i}) \mathbf{U}(\mathrm{k})
$$

$\Pi^{*}(\mathrm{i})=\arg \max _{\mathrm{a}} \sum_{\mathrm{k}} \mathbf{P}(\mathrm{k} \mid$ a.i) $\mathrm{U}(\mathrm{k})$

Defining State Utility

- Problem:
- When making a decision, we only know the reward so far, and the possible actions
- We've defined utility retroactively (i.e., the utility of a history is known once we finish it)
- What is the utility of a particular state in the middle of decision making?
- Need to compute expected utility of possible future histories

Value Iteration

- Initialize the utility of each non-terminal state

$$
\left.\mathrm{S}_{\mathrm{i}} \text { to } \mathbf{U}_{0}(\mathrm{i})=0 \quad\right\} \text { or some uniform or uniformly distributed value }
$$

- For t = 0, 1, 2, ..., do:

$$
\mathbf{U}_{\mathrm{t}+1}(\mathrm{i})<\mathbf{R}_{(\mathrm{i})}+\max _{\mathrm{a}} \sum_{k} \mathbf{P}(\mathrm{k} \mid \mathrm{a} . \mathrm{i}) \mathbf{U}_{\mathrm{t}}(\mathrm{k})
$$

Value Iteration

Initialize the utility of each s_{i} to $U_{0}(i)=0$

- For $\mathrm{t}=0,1,2, \ldots$, do:

$$
\mathbf{U}_{\mathbf{t}+1}(\mathrm{i}) \leqslant \mathbf{R}(\mathrm{i})+\max _{\mathrm{a}} \sum_{k} \mathbf{P}\left(\mathrm{k} \mid \text { a.i) } \mathbf{U}_{\mathrm{t}}(\mathrm{k})\right.
$$

EXERCISE: What is $U^{*}([3,3])$ (assuming that the other U^{*} are as shown)?

Value Iteration

- Initialize the utility of each non-terminal state

$$
s_{i} \text { to } \mathbf{U}_{\mathbf{0}}(\mathrm{i})=0
$$

- For t = 0, 1, 2, ..., do:

$$
\mathbf{U}_{\mathrm{t}+1}(\mathrm{i}) \leftarrow \mathbf{R}(\mathrm{i})+\max _{\mathrm{a}} \sum_{\mathrm{k}} \mathbf{P}\left(\mathrm{k} \mid \text { a.i) } \mathbf{U}_{\mathrm{t}}(\mathrm{k})\right.
$$

U*}\mp@subsup{}{3,3}{*}
U*}\mp@subsup{}{3,3}{*}
R R,3}
R R,3}
[P3,2 U* }\mp@subsup{}{3,2}{}+\mp@subsup{P}{3,3}{}\mp@subsup{U}{3,3}{*}+\mp@subsup{P}{4,3}{}\mp@subsup{U}{* 4,3}{*}
[P3,2 U* }\mp@subsup{}{3,2}{}+\mp@subsup{P}{3,3}{}\mp@subsup{U}{3,3}{*}+\mp@subsup{P}{4,3}{}\mp@subsup{U}{* 4,3}{*}

Policy Iteration

- Pick a policy Π at random

Policy Iteration

- Pick a policy Π at random
- Repeat:
- Compute the utility of each state for Π

$$
\mathbf{U}_{\mathbf{t}+1}(\mathrm{i}) \leftarrow \mathbf{R}(\mathrm{i})+\sum_{\mathrm{k}} \mathbf{P}(\mathrm{k} \mid \Pi(\mathrm{i}), \mathrm{i}) \mathbf{U}_{\mathbf{t}}(\mathrm{k})
$$

Policy Iteration

- Pick a policy Π at random
- Repeat:
- Compute the utility of each state for Π $\mathbf{U}_{\mathbf{t}+1}(\mathrm{i})<\mathbf{R}_{(\mathrm{i})}+\sum_{\mathrm{k}} \mathbf{P}(\mathrm{k} \mid \Pi(\mathrm{i}) . \mathrm{i}) \mathbf{U}_{\mathbf{t}}(\mathrm{k})$
- Compute the policy Π^{\prime} given these utilities $\Pi^{\prime}(\mathrm{i})=\arg \max _{\mathrm{a}} \sum_{\mathrm{k}} \mathbf{P}(\mathrm{k} \mid \mathrm{a} . \mathrm{i}) \mathbf{U}(\mathrm{k})$

Policy Iteration

- Pick a policy П at random
- Repeat:
- Compute the utility of each state for Π
$\mathbf{U}_{\mathbf{t}+1}(\mathrm{i}) \leftarrow \mathbf{R}(\mathrm{i})+\sum_{\mathrm{k}} \mathbf{P}(\mathrm{k} \mid \Pi(\mathrm{i}) \cdot \mathrm{i}) \mathbf{U}_{\mathbf{t}}(\mathrm{k})$
- Compute the połicy ח’ given these utilities
$\Pi^{\prime}(\mathrm{i})=\arg \max _{\mathrm{a}} \sum_{\mathrm{k}}$ Or solve the set of linear equations:
- If $\Pi^{\prime}=\Pi$ then ret $\mathbf{U}_{(\mathrm{i})}=\mathbf{R}(\mathrm{i})+\sum_{k} \mathbf{P}(\mathrm{k} \mid \Pi(\mathrm{i}) . \mathrm{i}) \mathbf{U}(\mathrm{k})$ (often a sparse system)

Infinite Horizon

In many problems, e.g., the robot navigation example, histories are potentially unbounded and the same state can be reached many times

3				+1	What if the robot lives forever?
2				-1	
1					One trick: Use discounting to make an infinite horizon problem mathematically tractable

Value Iteration

- Value iteration:
- Initialize state values (expected utilities) randomly
- Repeatedly update state values using best action, according to current approximation of state values
- Terminate when state values stabilize
- Resulting policy will be the best policy because it's based on accurate state value estimation
- Policy iteration:
- Initialize policy randomly
- Repeatedly update state values using best action, according to current approximation of state values
- Then update policy based on new state values
- Terminate when policy stabilizes
- Resulting policy is the best policy, but state values may not be accurate (may not have converged yet)
- Policy iteration is often faster (because we don't have to get the state values right)
- Both methods have a major weakness: They require us to know the transition function exactly in advance!

