State Spaces & Partial-Order Planning

AI Class 22 (Ch. 10 through 10.4.4)

Material from Dr. Marie desJardin, Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer

Planning Problem

- What is the planning problem?
- Find a <u>sequence of actions</u> that achieves a <u>goal</u> when executed from an <u>initial state</u>.
- That is, given
 - A set of operators (possible actions)
 - An initial state description
 - A goal (description or conjunction of predicates)
- Compute a sequence of operations: a **plan**.

Typical Assumptions

- **Atomic time**: Each action is indivisible
- No concurrent actions allowed
- Deterministic actions
 - The result of actions are completely known no uncertainty
- Agent is the sole cause of change in the world
- Agent is omniscient:
 - Has complete knowledge of the state of the world
- Closed world assumption:
 - Everything known-true about the world is in the state description
 - Anything not known-true is known-false

Blocks World

The **blocks world** consists of a table, set of blocks, and a robot gripper

Some domain constraints:

- Only one block on another block
- Any number of blocks on table
- Hand can only hold one block

Typical representation:

ontable(a) handempty ontable(c) on(b,a) clear(b) clear(c)

FABLE

Major Approaches

- GPS / STRIPS
- Situation calculus
- Partial order planning
- Hierarchical decomposition (HTN planning)
- Planning with constraints (SATplan, Graphplan)
- Reactive planning

General Problem Solver

- The General Problem Solver (GPS) system
 - An early planner (Newell, Shaw, and Simon)
- Generate actions that reduce difference between state and goal state
- Uses Means-Ends Analysis
 - Compare what is given or known with what is desired
 - Select a reasonable thing to do next
 - Use a **table of differences** to identify procedures to reduce differences
- GPS is a state space planner
 - Operates on state space problems specified by an initial state, some goal states, and a set of operations

Situation Calculus Planning

- Idea: Represent the planning problem using firstorder logic
 - Situation calculus lets us reason about **changes** in the world
 - Use theorem proving to show ("prove") that a sequence of actions will lead to a desired result
 - When applied to a world state / situation

Situation Calculus Planning, cont.

- Initial state: a logical sentence about (situation) S_0
- Goal state: usually a conjunction of logical sentences
- **Operators**: descriptions of how the world changes as a result of the agent's actions:
 - Result(*a*,*s*) names the situation resulting from executing action *a* in situation *s*.
- Action sequences are also useful:
 - Result'(*l,s*): result of executing list of actions (*l*) starting in *s*

Situation Calculus Planning, cont.

• Initial state:

```
At(Home, S_0) \land \neg Have(Milk, S_0) \land \neg Have(Bananas, S_0) \land \neg Have(Drill, S_0)
```

• Goal state:

```
(\exists s) At(Home,s) \land Have(Milk,s) \land Have(Bananas,s) \land Have(Drill,s)
```

• Operators:

```
\forall(a,s) Have(Milk,Result(a,s)) \Leftrightarrow ((a=Buy(Milk) \land At(Grocery,s)) \lor (Have(Milk, s) \land a \ne Drop(Milk)))
```

Action sequence Result'(1,s):

```
(\forall s) \text{ Result'}([\ ],s) = s
(\forall a,p,s) \text{ Result'}([a|p]s) = \text{Result'}(p,\text{Result}(a,s))
```

p=plan

Situation Calculus, cont.

• Solution: a **plan** that when applied to the **initial state** gives a situation satisfying the **goal query**:

```
At(Home, Result'(p,S₀))

∧ Have(Milk, Result'(p,S₀))

∧ Have(Bananas, Result'(p,S₀))

∧ Have(Drill, Result'(p,S₀))
```

• Thus we would expect a plan (i.e., variable assignment through unification) such as:

```
p = [Go(Grocery), Buy(Milk), Buy(Bananas), Go(HardwareStore),
Buy(Drill), Go(Home)]
```

Situation Calculus: Blocks World

- Example situation calculus rule for blocks world:
 - $$\begin{split} & \mathsf{clear}(\mathsf{X}, \mathsf{Result}(\mathsf{A}, \mathsf{S})) \Leftrightarrow \\ & [\mathsf{clear}(\mathsf{X}, \mathsf{S}) \land \\ & (\neg(\mathsf{A} = \mathsf{Stack}(\mathsf{Y}, \mathsf{X}) \lor \mathsf{A} = \mathsf{Pickup}(\mathsf{X})) \\ & \lor (\mathsf{A} = \mathsf{Stack}(\mathsf{Y}, \mathsf{X}) \land \neg(\mathsf{holding}(\mathsf{Y}, \mathsf{S})) \\ & \lor (\mathsf{A} = \mathsf{Pickup}(\mathsf{X}) \land \neg(\mathsf{handempty}(\mathsf{S}) \land \mathsf{ontable}(\mathsf{X}, \mathsf{S}) \land \mathsf{clear}(\mathsf{X}, \mathsf{S}))))] \\ & \lor [\mathsf{A} = \mathsf{Stack}(\mathsf{X}, \mathsf{Y}) \land \mathsf{holding}(\mathsf{X}, \mathsf{S}) \land \mathsf{clear}(\mathsf{Y}, \mathsf{S})] \\ & \lor [\mathsf{A} = \mathsf{Unstack}(\mathsf{Y}, \mathsf{X}) \land \mathsf{on}(\mathsf{Y}, \mathsf{X}, \mathsf{S}) \land \mathsf{clear}(\mathsf{Y}, \mathsf{S}) \land \mathsf{handempty}(\mathsf{S})] \\ & \lor [\mathsf{A} = \mathsf{Putdown}(\mathsf{X}) \land \mathsf{holding}(\mathsf{X}, \mathsf{S})] \end{split}$$
- English translation: a block is **clear** if
 - (a) in the previous state it was clear AND we didn't pick it up or stack something on it successfully, or
 - (b) we stacked it on something else successfully, or
- Wow.
- (c) something was on it that we unstacked successfully, or
- (d) we were holding it and we put it down.

Situation Calculus Planning: Analysis

- Fine in theory, but:
 - Problem solving (search) is exponential in the worst case
 - Resolution theorem proving only finds *a* proof (plan), not necessarily a *good* plan
- So what can we do?
 - Restrict the language
 - Blocks world is already pretty small...
 - Use a special-purpose algorithm (a planner) rather than general theorem prover

Basic Representations for Planning

- Classic approach first used in the STRIPS planner circa 1970
- States represented as conjunction of ground literals
 - at(Home) ∧ ¬have(Milk) ∧ ¬have(bananas) ...
- Goals are conjunctions of literals, but may have variables*
 - at(?x) \(\Lambda \) have(bananas) ...
- Don't need to fully specify state
 - Un-specified: either don't-care or assumed-false
 - Represent many cases in small storage
 - Often only represent **changes in state** rather than entire situation
- Unlike theorem prover, not finding whether the goal is **true**, but is there a sequence of actions to attain it

 *generally assume 3

Operator/Action Representation

- Operators contain three components:
 - Action description
 - Precondition conjunction of positive literals
 - Effect conjunction of positive or negative literals which describe how situation changes when operator is applied
- Example:

At(here) ,Path(here,there)

Op[Action: Go(there),

Precond: At(here) ^ Path(here,there),

Effect: At(there) ^ ¬At(here)]

Go(there)

At(there), ¬At(here)

• All variables are universally quantified

- Situation variables are implicit
 - Preconditions must be true in the state immediately before operator is applied
 - · Effects are true immediately after

Blocks World Operators

- Classic basic **operations** for the blocks world:
 - stack(X,Y): put block X on block Y
 - unstack(X,Y): remove block X from block Y
 - pickup(X): pickup block X
 - putdown(X): put block X on the table
- Each will be represented by
 - Preconditions
 - New facts to be added (add-effects)
 - Facts to be removed (delete-effects)
 - A set of (simple) variable constraints (optional!)

Blocks World Operators

- Classic basic **operations** for the blocks world:
 - $^{\bullet} \; stack(X,Y), \, unstack(X,Y), \, pickup(X), \, putdown(X) \\$
- Need:
 - Preconditions, facts to be added (add-effects), facts to be removed (delete-effects), optional variable constraints

Example: stack

preconditions(stack(X,Y), [holding(X), clear(Y)]) deletes(stack(X,Y), [holding(X), clear(Y)]). adds(stack(X,Y), [handempty, on(X,Y), clear(X)]) constraints(stack(X,Y), [$X \neq Y, Y \neq table, X \neq table$])

Blocks World Operators II

```
operator(stack(X,Y),
```

Precond [holding(X), clear(Y)],

Add [handempty, on(X,Y), clear(X)],

Delete [holding(X), clear(Y)],

Constr $[X \neq Y, Y \neq table, X \neq table]$).

operator(pickup(X),

[ontable(X), clear(X), handempty],

[holding(X)],

[ontable(X), clear(X), handempty],

[X≠table]).

operator(unstack(X,Y),

[on(X,Y), clear(X), handempty],

[holding(X), clear(Y)],

[handempty, clear(X), on(X,Y)],

 $[X \neq Y, Y \neq table, X \neq table]$).

operator(putdown(X),

[holding(X)],

[ontable(X), handempty, clear(X)],

[holding(X)],

[X≠table]).

STRIPS Planning

- STRIPS maintains two additional data structures:
 - State List all currently true predicates.
 - Goal Stack push-down stack of goals to be solved, current goal at top.
- If current goal is not satisfied by present state:
 - Examine add lists of operators
 - Push operator and preconditions list on stack (and call them subgoals)
- When current goal is satisfied, POP it from stack.
- When an operator is on top stack
 - Record the application of that operator on the plan sequence
 - Use the operator's add and delete lists to update current state.

State-Space Planning

- We initially have a space of **situations** or world states
 - Where you are, what you have, ...
- Find plan by searching **situations** to reach goal
- Progression planner: searches forward
 - From initial state to goal state
- **Regression planner**: searches backward from goal
 - Works **iff** operators have enough information to go both ways
 - Ideally leads to reduced branching: planner is only considering things that are relevant to the goal

Planning Heuristics

- Need an **admissible** heuristic to apply to planning states
 - Estimate of the distance (number of actions) to the goal
- Planning typically uses **relaxation** to create heuristics
 - Ignore all or some selected preconditions
 - Ignore delete lists: Movement towards goal is never undone)
 - Use state abstraction (group together "similar" states and treat them as though they are identical) e.g., ignore fluents*
 - Assume subgoal independence (use max cost; or, if subgoals actually are independent, sum the costs)
 - Use pattern databases to store exact solution costs of recurring subproblems

* an aspect of the world that changes - R&N 266

Plan-Space Planning

- Alternative: **search through space of** *plans***, not situations**
- Start from a **partial plan**; expand and refine until a complete plan that solves the problem is generated
- Refinement operators add constraints to the partial plan and modification operators for other changes
- We can still use STRIPS-style operators: Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)

Op(ACTION: RightSock, EFFECT: RightSockOn)

Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Op(ACTION: LeftSock, EFFECT: leftSockOn)

can result in a partial plan of [RightShoe, LeftShoe] ③

Partial-Order Planning

Partial-Order Planning

- A linear planner builds a plan as a totally ordered sequence of plan steps
- A non-linear planner (aka partial-order planner) builds up a plan as a set of steps with some temporal constraints
 - E.g., S1<S2 (step S1 must come before S2)
- Partially ordered plan (POP) refined by either:
 - adding a new plan step, or
 - adding a new **constraint** to the steps already in the plan.
- A POP can be linearized (converted to a totally ordered plan) by topological sorting*

* from search - R&N 223

Least Commitment

- Non-linear planners embody the principle of least commitment
 - Only choose actions, orderings, and variable bindings that are absolutely necessary
 - Leave non-absolutely-necessary decisions till later
 - Avoids early commitment to decisions that don't really matter
- A linear planner always chooses to add a plan step in a particular place in the sequence
- A non-linear planner chooses to add a step and possibly some temporal constraints

Non-Linear Plan: Steps

- A non-linear plan consists of
 - (1) A set of steps $\{S_1, S_2, S_3, S_4...\}$

Each step has an operator description, preconditions and post-conditions

- (2) A set of **causal links** $\{ ... (S_i, C, S_j) ... \}$ (One) goal of step S_i is to achieve precondition C of step S_j
- (3) A set of **ordering constraints** $\{ ... S_i \le S_j ... \}$ if step S_i must come before step S_j

Non-Linear Plan: Completeness

- A non-linear plan consists of
 - (1) A set of **steps** $\{S_1, S_2, S_3, S_4...\}$
 - (2) A set of causal links $\{ ... (S_i, C, S_i) ... \}$
 - (3) A set of ordering constraints $\{ \ ... \ S_i \!\!<\!\! S_j \ ... \ \}$
- A non-linear plan is complete iff
 - Every step mentioned in (2) and (3) is in (1)
 - If S_j has prerequisite C, then there exists a causal link in (2) of the form (S_i,C,S_j) for some S_i
 - If (S_i, C, S_j) is in (2) and step S_k is in (1), and S_k threatens (S_i, C, S_j) (makes C false), then (3) contains either $S_k < S_i$ or $S_j < S_k$

The Initial Plan

Every plan starts the same way

Operators:

Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)

Op(ACTION: RightSock, EFFECT: RightSockOn)

Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)

Op(ACTION: LeftSock, EFFECT: leftSockOn)

POP Constraints and Search Heuristics

- Only add steps that reach a not-yet-achieved precondition
- Use a least-commitment approach:
 - Don't order steps unless they need to be ordered
- Honor causal links $S_1 \rightarrow S_2$ that **protect** a condition c:
 - Never add an intervening step S₃ that violates c
 - If a parallel action **threatens** *c* (i.e., has the effect of negating or **clobbering** *c*), resolve that threat by adding ordering links:
 - Order S₃ before S₁ (demotion)
 - Order S₃ after S₂ (**promotion**)

Partial-Order Planning Example

• Goal: Have milk, bananas, and a drill

Real-World Planning Domains

- Real-world domains are complex
- Don't satisfy assumptions of STRIPS or partial-order planning methods
- Some of the characteristics we may need to deal with:
 - Modeling and reasoning about resources
 - Representing and reasoning about time Scheduling
 - Planning at different levels of abstractions
 - Conditional outcomes of actions) Planning under uncertainty Uncertain outcomes of actions
 - Exogenous events
 - Incremental plan development
 - HTN planning Dynamic real-time replanning

Hierarchical Decomposition

- Hierarchical decomposition, or hierarchical task network (HTN) planning, uses abstract operators to incrementally decompose a planning problem from a high-level goal statement to a primitive plan network
- **Primitive operators** represent actions that are **executable**, and can appear in the final plan
- Non-primitive operators represent goals (equivalently, abstract actions) that require further decomposition (or operationalization) to be executed
- There is no "right" set of primitive actions: One agent's goals are another agent's actions!

HTN Operator: Example

HTN Operator Representation

- Russell & Norvig explicitly represent causal links
- Can also be computed dynamically by using a model of preconditions and effects
- Dynamically computing causal links means that actions from one operator can safely be interleaved with other operators, and subactions can safely be removed or replaced during plan repair
- R&N representation only includes variable bindings
- Can actually introduce a wide array of variable constraints

Truth Criterion

- Determining whether a **formula is true** at a particular point in a partially ordered plan is, in the general case, NP-hard
- Intuition: there are exponentially many ways to **linearize** a partially ordered plan
- In the worst case, if there are N actions unordered with respect to each other, there are N! linearizations
- Ensuring soundness of truth criterion requires checking the formula under all possible linearizations
- Use heuristic methods instead to make planning feasible
- Check later to be sure no constraints have been violated

Truth Criterion in HTN Planners

- Heuristic:
 - 1. Prove that there exists *one* possible ordering of the actions that makes the formula true
 - 2. But don't insert ordering links to enforce that order
- Such a proof is efficient
 - Suppose you have an action A1 with a precondition P
 - Find an action A2 that achieves P (A2 can be initial world state)
 - Make sure there is no action *necessarily* between A2 and A1 that negates P
- Applying this heuristic for all preconditions in the plan can result in infeasible plans

Increasing Expressivity

- Conditional effects
 - Instead of different operators for different conditions, use a single operator with conditional effects
 - Move (block1, from, to) and MoveToTable (block1, from) collapse into one Move (block1, from, to):
 - Op(ACTION: Move(block I, from, to), PRECOND: On (block I, from) ^ Clear (block I) ^ Clear (to) EFFECT: On (block I, to) ^ Clear (from) ^ ~On(block I, from) ^ ~Clear(to) when to<>Table
 - There's a problem with this operator: can you spot what it is?
- Negated and disjunctive goals
- Universally quantified preconditions and effects

Reasoning About Resources

- Introduce numeric variables that can be used as *measures*
- These variables represent resource quantities, and change over the course of the plan
- Certain actions may produce (increase the quantity of) resources
- Other actions may consume (decrease the quantity of) resources
- More generally, may want different types of resources
 - Continuous vs. discrete
 - Sharable vs. nonsharable
 - Reusable vs. consumable vs. self-replenishing

Other Real-World Planning Issues

- Conditional planning
- Partial observability
- Information gathering actions
- Execution monitoring and replanning
- Continuous planning
- Multi-agent (cooperative or adversarial) planning

Planning Summary

- Planning representations
 - Situation calculus
 - STRIPS representation: Preconditions and effects
- Planning approaches
 - State-space search (STRIPS, forward chaining, ...)
 - Plan-space search (partial-order planning, HTN, ...)
 - Constraint-based search (GraphPlan, SATplan, ...)
- Search strategies
 - Forward planning
 - Goal regression
 - Backward planning
 - Least-commitment
 - Nonlinear planning