

Bookkeeping & Today HW5 out by 11:59pm • Eliding +/- ... • Project designs Thursday Students Score A > 70 15 • Not trivial to grade! B > 60 12 C > 50 2 Today: $D \leq 50$ • A couple of midterm questions These are very very approximate. • Reasoning with logic-based agents Logical inference Model checking

Logical Agents for Wumpus World

Three (non-exclusive) agent architectures:

- Reflex agents
 - Have rules that classify situations, specifying how to react to each possible situation
- Model-based agents
 - Construct an internal model of their world
- Goal-based agents
 - Form goals and try to achieve them

A Simple Reflex Agent

- Some difficulties:
- Climb?
 - There is no percept that indicates the agent should climb out position and holding gold are not part of the percept sequence
- Loops?
 - The percept will be repeated when you return to a square, which should cause the same response (unless we maintain some internal model of the world)

Situation Calculus

- Alternatively, add a special 2nd-order predicate, **holds(f,s)**, that means "f is true in situation s." E.g., holds(at(Agent,1,1),s0)
- Or: add a new function, **result(a,s)**, that maps a situation s into a new situation as a result of performing action a. For example, result(forward, s) is a function that returns the successor state (situation) to s
- Example: The action *agent-walks-to-location-y* could be represented by

 $(\forall x)(\forall y)(\forall s) (at(Agent,x,s) \land \neg onbox(s)) \rightarrow at(Agent,y,result(walk(y),s))$

Deducing Hidden Properties II

- We need to write some rules that relate various aspects of a single world state (as opposed to across states)
- There are two main kinds of such rules:
 - Causal rules reflect assumed direction of causality:
 (∀11,12,s) At(Wumpus,11,s) ∧ Adjacent(11,12) → Smelly(12)
 (∀ 11,12,s) At(Pit,11,s) ∧ Adjacent(11,12) → Breezy(12)
- Systems that reason with causal rules are called **modelbased reasoning** systems

- of a single world state (as opposed to across st
- There are two main kinds of such rules:

Deducing Hidden Properties II

- We need to write some rules that relate various aspects of a single world state (as opposed to across states)
- There are two main kinds of such rules:
 - Diagnostic rules infer the presence of hidden properties directly from the percept-derived information. We have already seen two:
 (∀ 1,s) At(Agent,1,s) ∧ Breeze(s) → Breezy(1)
 (∀ 1,s) At(Agent,1,s) ∧ Stench(s) → Smelly(1)

Representing Change: The Frame Problem

- Frame axioms: If property x <u>doesn't change</u> as a result of applying action a in state s, then it stays the same.
 - On $(x, z, s) \land Clear (x, s) \rightarrow$ On $(x, table, Result(Move(x, table), s)) \land$ $\neg On(x, z, Result (Move (x, table), s))$
 - On $(y, z, s) \land y \neq x \rightarrow$ On (y, z, Result (Move (x, table), s))
 - The proliferation of frame axioms becomes very cumbersome in complex domains

Qualification Problem

• Qualification problem:

- How can you possibly characterize every single effect of an action, or every single exception that might occur?
- When I put my bread into the toaster, and push the button, it will become toasted after two minutes, unless...
 - The toaster is broken, or...
 - The power is out, or...
 - I blow a fuse, or...
 - A neutron bomb explodes nearby and fries all electrical components, or...
 - A meteor strikes the earth, and the world we know it ceases to exist, or...

Ramification Problem

- How do you describe every effect of every action?
 - When I put my bread into the toaster, and push the button, the bread will become toasted after two minutes, and...
 - The crumbs that fall off the bread onto the bottom of the toaster over tray will also become toasted, and...
 - Some of the aforementioned crumbs will become burnt, and...
 - The outside molecules of the bread will become "toasted," and ...
 - The inside molecules of the bread will remain more "breadlike," and...
 - The toasting process will release a small amount of humidity into the air because of evaporation, and...
 - The heating elements will become a tiny fraction more likely to burn out the next time I use the toaster, and...
 - The electricity meter in the house will move up slightly, and...

Knowledge Engineering!

- Modeling the "right" conditions and the "right" effects at the "right" level of abstraction is very difficult
- Knowledge engineering (creating and maintaining knowledge bases for intelligent reasoning) is a **field**
- Many researchers hope that automated knowledge acquisition and machine learning tools can fill the gap:
 - Our intelligent systems should be able to **learn** about the conditions and effects, just like we do.
 - Our intelligent systems should be able to learn when to pay attention to, or reason about, certain aspects of processes, depending on the context.

Goal-Based Agents

- Once the gold is found, it is necessary to change strategies. So now we need a new set of action values.
- We could encode this as a rule:
 (∀s) Holding(Gold,s) → GoalLocation([1,1]),s)
- We must now decide how the agent will work out a sequence of actions to accomplish the goal.
- Three possible approaches are:
 - Inference: good versus wasteful solutions
 - Search: make a problem with operators and set of states
 - Planning: coming soon!

Reminder: Inference Rules for FOL

- Inference rules for propositional logic apply to FOL
 Modus Ponens, And-Introduction, And-Elimination, ...
- New (sound) inference rules for use with quantifiers:
 - Universal elimination
 - Existential introduction
 - Existential elimination
 - Generalized Modus Ponens (GMP)

Automated Inference for FOL

- Automated inference using FOL is harder than PL
 - Variables can take on an infinite number of possible values
 - From their domains, anyway
 - This is a reason to do careful KR!
 - So, potentially infinite ways to apply Universal Elimination
- *Godel's Completeness Theorem* says that FOL entailment is only semidecidable*
 - If a sentence is **true** given a set of axioms, can prove it
 - If the sentence is **false**, then there is no guarantee that a procedure will ever determine this
 - Inference may never halt

*The "halting problem"

Generalized Modus Ponens (GMP)

• Derive new sentence: subst(θ , R)

Substitutions

- subst(θ, α) denotes the result of applying a set of substitutions, defined by θ, to the sentence α
- A substitution list $\theta = \{v_1/t_1, v_2/t_2, ..., v_n/t_n\}$ means to replace all occurrences of variable symbol v_i by term t_i
- Substitutions are made in left-to-right order in the list
- subst({x/IceCream, y/Ziggy}, eats(y,x)) = eats(Ziggy, IceCream)

Horn Clauses II

- Special cases
 - $P_1 \land P_2 \land \dots P_n \rightarrow Q$
 - $P_1 \land P_2 \land \dots P_n \rightarrow false$
 - true $\rightarrow Q$
- These are not Horn clauses:
 - p(a) v q(a)
 - $(P \land Q) \rightarrow (R \lor S)$

Forward Chaining

- Proofs start with the given axioms/premises in KB, deriving new sentences using GMP until the goal/ query sentence is derived
- This defines a **forward-chaining** inference procedure because it moves "forward" from the KB to the goal [eventually]
- Inference using GMP is **complete** for KBs containing **only Horn clauses**

Forward Chaining Example

• KB:

- $allergies(X) \rightarrow sneeze(X)$
- $cat(Y) \land allergic-to-cats(X) \rightarrow allergies(X)$
- cat(Felix)
- allergic-to-cats(Lise)
- Goal:
 - sneeze(Lise)

Forward Chaining Algorithm

procedure Forward-Chain(*KB*, *p*)

if there is a sentence in KB that is a renaming of p then return Add p to KB for each $(p_1 \land \ldots \land p_n \Rightarrow q)$ in KB such that for some i, UNIFY $(p_i, p) = \theta$ succeeds do FIND-AND-INFER $(KB, [p_1, \ldots, p_{i-1}, p_{i+1}, \ldots, p_n], q, \theta)$ end

procedure FIND-AND-INFER(*KB*, *premises*, *conclusion*, θ)

```
 \begin{array}{l} \mbox{if } premises \ = \ [ \ ] \ \mbox{then} \\ FORWARD-CHAIN(KB, \mbox{SUBST}(\theta, conclusion)) \\ \mbox{else for each } p' \ \mbox{in } KB \ \mbox{such that } UNIFY}(p', \mbox{SUBST}(\theta, \mbox{First}(premises))) \ = \ \mbox{$\theta_2$} \ \mbox{do } b \\ FIND-AND-INFER(KB, \mbox{REST}(premises), conclusion, \mbox{COMPOSE}(\theta, \mbox{$\theta_2$})) \\ \mbox{end} \end{array}
```

Backward Chaining

- Backward-chaining deduction using GMP
 - Complete for KBs containing only Horn clauses.
- Proofs:
 - Start with the goal query
 - Find rules with that conclusion

Avoid loops Is new subgoal already on goal stack? Avoid repeated work: has subgoal already been proved true already failed?

- Prove each of the antecedents in the implication
- Keep going until you reach premises!

Backward Chaining Example

- KB:
 - $allergies(X) \rightarrow sneeze(X)$
 - $cat(Y) \land allergic-to-cats(X) \rightarrow allergies(X)$
 - cat(Felix)
 - allergic-to-cats(Lise)
- Goal:
 - sneeze(Lise)

