First-Order Logic &

Inference
Al Class 19 (Ch. 8.1-8.3,9)

Material from Dr. Marie desJardin, Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer

Bookkeeping & Today

« HW5 out by 11:59pm

Eliding +/- ...

* Project designs Thursday Score |Students|
A>70 15

B > 60 12
C>5 2

D <50

 Not trivial to grade!

* Today:

* A couple of midterm questions These are very

- Reasoning with logic-based agents e G

- Logical inference
* Model checking

Midterm: State Spaces

* Describe the state space for the following puzzle:

* You are given a grid of 5 color bars (rows). Each bar contains exactly
5 colors, with no duplications.

* The colors on each bar can be changed by rotating the bar to the
right, one step at a time.

» This is an initial state — so, it’s a member of the state space.

Green Blue Orange Red Yellow ° What Other states can you

Green Orange Yellow Blue Red generate?
Blue Red Green Yellow Orange 3
Green Orange Yellow Blue Red * How many total states is that?

Green Orange Red Yellow Blue

Midterm: State Spaces

* What is the difference between Nash Equilibrium
and Pareto Optimality?

Nash equilibrium is when no player in a game can
increase their payoff by unilaterally changing their actions.
* Social or individual good?
* Can you have >1 Nash equilibrium?
Pareto optimal is when it is not possible to make any
player better off in the game without hurting another
player.

* Social or individual good?

Logical Agents for Wumpus World

Three (non-exclusive) agent architectures:
- Reflex agents

» Have rules that classify situations, specifying how to react
to each possible situation

* Model-based agents

¢ Construct an internal model of their world
* Goal-based agents

* Form goals and try to achieve them

A Typical Wumpus World

* The agent Senen s Chieeze s
. / —

always starts in
the field [1,1].

T,

“ssTecs

 The task of the St

agent 1s to find Sssss
the gold, return

to the field [1,1]

and climb out of
the cave.

o

-
“~ Breeze —
o —

A Simple Reflex Agent

* Rules to map percepts into observations:
Vb,g,u,c,t Percept([Stench, b, g, u, c], t) — Stench(t)
Vs,g,u,c,t Percept([s, Breeze, g, u, c], t) — Breeze(t)
Vs,b,u,c,t Percept([s, b, Glitter, u, c], t) = AtGold(t)

* Rules to select an action given observations:
V't AtGold(t) — Action(Grab, t)

A Simple Reflex Agent

* Some difficulties:

* Climb?
There is no percept that indicates the agent should climb out —
position and holding gold are not part of the percept sequence

* Loops?

The percept will be repeated when you return to a square,
which should cause the same response (unless we maintain
some internal model of the world)

Representing Change

Representing change in the world in logic can be tricky.

One way is just to change the KB
Add and delete sentences from the KB to reflect changes
How do we remember the past, or reason about changes?

Situation calculus is another way

A situation is a snapshot of the world
at some instant in time

When the agent performs an
action A in situation S1, the
result is a new situation S2.

Situations

N
&

Turn (Right)

[=T T]

Forward

Situation Calculus

* A situation is:
A snapshot of the world
At an interval of time
During which nothing changes

Forward

 Every true or false statement is made wrt. a situation

Add situation variables to every predicate.

at(Agent, 1,1) becomes at(Agent,1,1,50):
at(Agent, 1,1) is true in situation (i.e., state) s0.

Situation Calculus

* Alternatively, add a special 2"-order predicate, holds(f,s), that
means “f is true in situation s.” E.g., holds(at(Agent,1,1),s0)

Or: add a new function, result(a,s), that maps a situation s into
a new situation as a result of performing action a. For example,
result(forward, s) is a function that returns the successor state
(situation) to s

Example: The action agent-walks-to-location-y could be
represented by

(Vx)(Vy)(Vs) (at(Agent,x,s) A monbox(s)) — at(Agent,y,result(walk(y),s))

Deducing Hidden Properties

* From the perceptual information we obtain in
situations, we can infer properties of locations
V1,s at(Agent,l,s) A Breeze(s) — Breezy(l)

V1,s at(Agent,l,s) A Stench(s) — Smelly(])

* Neither Breezy nor Smelly need situation arguments
because pits and Wumpuses do not move around

Deducing Hidden Properties I1

We need to write some rules that relate various aspects
of a single world state (as opposed to across states)

There are two main kinds of such rules:

Causal rules reflect assumed direction of causality:
(V11,12,s) At(Wumpus,11,s) A Adjacent(11,12) — Smelly(12)
(V 11,12,5) At(Pit,11,s) A Adjacent(11,12) — Breezy(12)

Systems that reason with causal rules are called model-
based reasoning systems

Deducing Hidden Properties 11

We need to write some rules that relate various aspects
of a single world state (as opposed to across states)

There are two main kinds of such rules:

Deducing Hidden Properties I1

* We need to write some rules that relate various aspects
of a single world state (as opposed to across states)

* There are two main kinds of such rules:

Diagnostic rules infer the presence of hidden
properties directly from the percept-derived
information. We have already seen two:

(V 1,s) At(Agent,l,s) A Breeze(s) — Breezy(l)

(V Ls) At(Agent,l,s) A Stench(s) — Smelly(1)

Frames: A Data Structure

Slots Fillers

* A frame divides knowledge e
into substructures by itle | Expert Systems

author |Giarratano

representing “stereotypical edition | Third
year 1998

Situations B ” pages 600

Situations can be visual - _—
scenes, structures of EEE computer

D lization_of|a_kind_ of machi

thSical Obj € CtS P} types (desktop, laptop,mainframe,super)

if-added: Procedure ADD_COMPUTER

speed default: faster

U Se ﬁll fo T rep res entin g if-needed: Procedure FIND_SPEED

location (home,office,mobile)

commonsense knowledge. uder wamanty e, n0)

WG) ing.net/knowled; jon/ frames.htmi#. WCHhCNxBo8A

Representing Change:
The Frame Problem

* Frame axioms: If property x doesn’t change as a
result of applying action a in state s, then it stays the
same.

On (x, z, s) A Clear (x, s) —
On (x, table, Result(Move(x, table), s)) A
-0n(x, z, Result (Move (x, table), s))

On (y, z, 8) A y=x — On (y, z, Result (Move (x, table), s))

The proliferation of frame axioms becomes very cumbersome
in complex domains

The Frame Problem 11

* Successor-state axiom: General statement that characterizes
every way in which a particular predicate can become true:
Either it can be made true, or it can already be true and not be
changed:

On (x, table, Result(a,s)) <=
[On (%, z, s) A Clear (x, s) A a=Move(x, table)] v
[On (x, table, s) A a = Move (X, z)]

* In complex worlds with longer chains of action, even these are
too cumbersome

Planning systems use special-purpose inference to reason about the
expected state of the world at any point in time during a multi-step plan

Qualification Problem

* Qualification problem:

How can you possibly characterize every single effect of an
action, or every single exception that might occur?

When I put my bread into the toaster, and push the button, it
will become toasted after two minutes, unless...

The toaster is broken, or...

The power is out, or...

I blow a fuse, or...

A neutron bomb explodes nearby and fries all electrical components,
or...

A meteor strikes the earth, and the world we know it ceases to exist,
or...

Ramification Problem

* How do you describe every effect of every action?
When I put my bread into the toaster, and push the button, the bread will
become toasted after two minutes, and...

The crumbs that fall off the bread onto the bottom of the toaster over tray will
also become toasted, and...

Some of the aforementioned crumbs will become burnt, and...
The outside molecules of the bread will become “toasted,” and...
The inside molecules of the bread will remain more “breadlike,” and...

The toasting process will release a small amount of humidity into the air because
of evaporation, and...

The heating elements will become a tiny fraction more likely to burn out the
next time I use the toaster, and...

The electricity meter in the house will move up slightly, and...

Knowledge Engineering!

Modeling the “right” conditions and the “right” effects
at the “right” level of abstraction is very difficult

Knowledge engineering (creating and maintaining
knowledge bases for intelligent reasoning) is a field

Many researchers hope that automated knowledge

acquisition and machine learning tools can fill the gap:
Our intelligent systems should be able to learn about the
conditions and effects, just like we do.

Our intelligent systems should be able to learn when to pay
attention to, or reason about, certain aspects of processes,
depending on the context.

Preferences Among Actions

A problem with the Wumpus world knowledge base that
we have built so far is that it is difficult to decide which
action is best among a number of possibilities.

For example, to decide between a forward and a grab,
axioms describing when it is OK to move to a square
would have to mention glitter.

This is not modular!

We can solve this problem by separating facts about
actions from facts about goals. This way our agent can
be reprogrammed just by asking it to achieve different
goals.

Preferences Among Actions

* The first step is to describe the desirability of actions
independent of each other.

In doing this we will use a simple scale: actions can be
Great, Good, Medium, Risky, or Deadly.

Obviously, the agent should always do the best action it
can find:

(Va,s) Great(a,s) — Action(a,s)

(Va,s) Good(a,s) A =(3b) Great(b,s) — Action(a,s)

(Va,s) Medium(a,s) A (=(3b) Great(b,s) v Good(b,s)) — Action(a,s)

Preferences Among Actions

* We use this action quality scale in the following way.

* Until it finds the gold, the basic strategy for our agent is:

Great actions include picking up the gold when found and climbing
out of the cave with the gold.

Good actions include moving to a square that’s OK and hasn't been
visited yet.

Medium actions include moving to a square that is OK and has
already been visited.

Risky actions include moving to a square that is not known to be
deadly or OK.

Deadly actions are moving into a square that is known to have a pit
or a Wumpus.

Goal-Based Agents

Once the gold is found, it is necessary to change strategies.
So now we need a new set of action values.

We could encode this as a rule:
* (Vs) Holding(Gold,s) — GoalLocation([1,1]),s)

We must now decide how the agent will work out a
sequence of actions to accomplish the goal.

Three possible approaches are:

- Inference: good versus wasteful solutions

 Search: make a problem with operators and set of states
* Planning: coming soon!

Logical
Inference

Chapter 9

Model Checking

* Given KB, does sentence S hold?

Quick review: What’s a KB? What’s a sentence?

 Basically generate and test:
Generate all the possible models
Consider the models M in which KB is TRUE
If VM S, then S is provably true ‘ What does model mean?
If VM =S, then S is provably false

Otherwise (AM1 S A AM2 =S): S is satisfiable but neither
provably true or provably false

Efficient Model Checking

¢ Davis-Putnam algorithm (DPLL): Generate-and-test model
checking with:
Early termination (short-circuiting of disjunction and conjunction)

Pure symbol heuristic: Any symbol that only appears negated or
unnegated must be FALSE/TRUE respectively.

» Can “conditionalize” based on instantiations already produced

Unit clause heuristic: Any symbol that appears in a clause by itself can
immediately be set to TRUE or FALSE

* WALKSAT: Local search for satisfiability:

Pick a symbol to flip (toggle TRUE/FALSE), either using min-
conflicts or choosing randomly

* ...or you can use any local or global search algorithm!

Reminder: Inference Rules for FOL

* Inference rules for propositional logic apply to FOL
* Modus Ponens, And-Introduction, And-Elimination, ...

* New (sound) inference rules for use with quantifiers:
+ Universal elimination
 Existential introduction
- Existential elimination
* Generalized Modus Ponens (GMP)

Automating FOL Inference
with Generalized Modus
Ponens

Automated Inference for FOL

* Automated inference using FOL is harder than PL

Variables can take on an infinite number of possible values
* From their domains, anyway
* This is a reason to do careful KR!

So, potentially infinite ways to apply Universal Elimination

* Godel’s Completeness Theorem says that FOL
entailment 1s only semidecidable*®
If a sentence is true given a set of axioms, can prove it

If the sentence is false, then there is no guarantee that a
procedure will ever determine this

Inference may never halt

*The “halting problem”

Generalized Modus Ponens (GMP)

* Apply modus ponens reasoning to generalized rules

* Combines And-Introduction, Universal-
Elimination, and Modus Ponens

From P(c) and Q(c) and (Vx)(P(x) » Q(x)) — R(x) derive R(c)

* General case: Given
atomic sentences P, P,, ..., Py
implication sentence (Q; A Q, A ... A Q) = R
* Q, ..., Qy and R are atomic sentences
substitution subst(0 , P,) = subst(6 , Q,) fori=1,...,.N
Derive new sentence: subst(6 , R)

Generalized Modus Ponens (GMP)

 Derive new sentence: subst(6 , R)

» Substitutions

subst(0, a) denotes the result of applying a set of
substitutions, defined by 6, to the sentence o

A substitution list 8 = {v,/t;, v,/t,, ..., v,/t,} means to
replace all occurrences of variable symbol v; by term t;

Substitutions are made in left-to-right order in the list

subst({x/IceCream, y/Ziggy}, eats(y,x)) = eats(Ziggy,
IceCream)

Horn Clauses

A Horn clause is a sentence of the form:
(Vx) Py(x) A Py(x) A ... A P (x) = Q(x)
where:
there are 0 or more P;s and 0 or 1 Qs
the P;s and Q are positive (non-negated) literals

Equivalently: P,(x) v P,(x) ... v P,(x) where the P, are
all atomic and at most one of them is positive

Prolog is based on Horn clauses

Horn clauses represent a subset of the set of
sentences representable in FOL

Horn Clauses 11

* Special cases
P APyn...P,—Q
P, APy A ... P, — false
true — Q

* These are not Horn clauses:

p(2) v q(a)
PArQ —=RVS)

Forward Chaining

* Proofs start with the given axioms/premises in KB,
deriving new sentences using GMP until the goal/
query sentence is derived

 This defines a forward-chaining inference
procedure because it moves “forward” from the KB
to the goal [eventually]

* Inference using GMP is complete for KBs
containing only Horn clauses

Forward Chaining Example

* KB:
allergies(X) — sneeze(X)
cat(Y) a allergic-to-cats(X) — allergies(X)
cat(Felix)
allergic-to-cats(Lise)

* Goal:

- sneeze(Lise)

Forward Chaining Algorithm

procedure FORWARD-CHAIN(KB, p)

if there is a sentence in KB that is a renaming of p then return

Add pto KB

foreach(p, A ... A p, = g)in KB such that for some i, UNIFY(p;,p) = € succeeds do
FIND-AND-INFER(KB, [p1, ..., pi—l,pirly ..., Pn] q,)

end

procedure FIND-AND-INFER(K B, premises, conclusion,)

if premises = []then
FoRWARD-CHAIN(K B, SUBST(#, conclusion))

else for each p’ in KB such that Un1FY(p’, SUBST(A, FIRST(premises))) = 6 do
FinD-AnD-INFER(KB, REST(premises), conclusion, Composg(f, #1))

end

Backward Chaining

* Backward-chaining deduction using GMP

Complete for KBs containing only Horn clauses.

Avoid loops
* Proofs: Is new subgoal already

Start with the goal query on goal stack?
Avoid repeated work: has subgoal

Find rules with that already been proved true
conclusion already failed?

Prove each of the antecedents in the implication

» Keep going until you reach premises!

Backward Chaining Example

 KB:
allergies(X) — sneeze(X)
cat(Y) a allergic-to-cats(X) — allergies(X)
cat(Felix)
allergic-to-cats(Lise)

* Goal:

sneeze(Lise)

Backward Chaining Algorithm

function BACK-CHAIN(K B, ¢) returns a set of substitutions

Back-CHan-LisT(KB, [g], {})

function BACK-CHAIN-LIST(KB, glist, #) returns a set of substittions
inputs: KB, a knowledge base
glist, a list of conjuncts forming a query (¢ already applied)
8, the current substitution
static: answers, a set of substitutions, initially empty

if glist is empty then return {6}
g+ BIRsT(glist)
for each g/ in KB such that §; « Un1FY(g, g} succeeds do
Add ComprosE(f, 8;) to answers
end

for eachsentence (py A ... A p, = g!)in KB suchthat §; - UN1FY(g, g/) succeeds do
answers ¢ BACK-CHAIN-LIST(KB, SUBSTI#;, [py . .. pa)), COMPOSE(H, f;)) U answers
end

return the union of BACK-CHAIN-L1sTIKB,ResTiglist), #) for each # € answers

Forward vs. Backward Chaining

* FC is data-driven
Automatic, unconscious processing
E.g., object recognition, routine decisions
May do lots of work that is irrelevant to the goal

* BC is goal-driven, appropriate for problem-solving
Where are my keys? How do I get to my next class?

Complexity of BC can be much less than linear in the size
of the KB

Completeness of GMP

GMP (using forward or backward chaining) is complete for
KBs that contain only Horn clauses

It is not complete for simple KBs that contain non-Horn
clauses

The following entail that S(A) is true:
(Vx) P(x) = Q(x)

(Vx) =P(x) = R(x)

(Vx) Q(x) = S(x)

(Vx) R(x) = S(x)

If we want to conclude S(A), with GMP we cannot, since
the second one is not a Horn clause

It is equivalent to P(x) v R(x)

