# Artificial Intelligence Class 2: Intelligent Agents



# Bookkeeping

- Due last night:
  - Introduction survey \ If you haven't
  - Academic integrity  $\int done these, do!$
- HW 1
  - Writing sections: 2 readings, 1 short essay, 6 questions
    - http://tiny.cc/mc-what-is-ai
    - http://ai100.stanford.edu/2016-report
  - Coding problems: out this afternoon
    - We will update on Piazza
- Due 11:59pm, 9/19

### Today's Class

- What's an agent?
  - Definition of an agent
  - Rationality and autonomy
  - Types of agents
  - Properties of environments



### How Do You Design an Agent?

#### • An intelligent agent:

- Perceives its environment via sensors
- Acts upon that environment with its effectors (or actuators)
- A discrete agent:
  - Receives percepts one at a time
  - Maps this percept sequence to a sequence of discrete actions



### Human Sensors/Percepts, Actuators/Actions

- Sensors:
  - Eyes (vision), ears (hearing), skin (touch), tongue (gustation), nose (olfaction), neuromuscular system (proprioception), ...
- Percepts: "that which is perceived"
  - At the lowest level electrical signals from these sensors
  - After preprocessing objects in the visual field (location, textures, colors, ...), auditory streams (pitch, loudness, direction), ...
- Actuators/effectors:
  - Limbs, digits, eyes, tongue, ...
- Actions:
  - Lift a finger, turn left, walk, run, carry an object, ...

### Human Sensors/Percepts, Actuators/Actions

- Sensors:
  - Eyes (vision), ears (hearing), skin (touch), tongue (gustation), nose (olfaction), neuromuscular system (proprioception), ...
- Percepts: "that which is perceive
  - At the lowest level electrical signation
  - After preprocessing objects in the ...), auditory streams (pitch, loudn
- Actuators/effectors:
  - Limbs, digits, eyes, tongue, ...

#### Percepts and actions need to be carefully defined

• Sometimes at different levels of abstraction!

The Point:

- Actions:
  - Lift a finger, turn left, walk, run, carry an object, ...

### E.g.: Automated Taxi

- **Percepts:** Video, sonar, speedometer, odometer, engine sensors, keyboard input, microphone, GPS, ...
- Actions: Steer, accelerate, brake, horn, speak/display, ...
- **Goals**: Maintain safety, reach destination, maximize profits (fuel, tire wear), obey laws, provide passenger comfort, ...
- **Environment:** U.S. urban streets, freeways, traffic, pedestrians, weather, customers, ...
- Different aspects of driving may require different types of agent programs!

# Rationality

- An ideal **rational agent**, in every possible world state, does action(s) that **maximize its expected performance**
- Based on:
  - The percept sequence (world state)
  - Its knowledge (built-in and acquired)
- Rationality includes information gathering
  - If you don't know something, find out!
  - No "rational ignorance"
- Need a **performance measure** 
  - False alarm (false positive) and false dismissal (false negative) rates, speed, resources required, effect on environment, constraints met, user satisfaction, ...

### Autonomy

- An autonomous system determines its own behavior
- But not if all its decisions are included in its design
  - I.e., all decisions are made by its designer according to *a priori* decisions
- Good autonomous agents need:
  - Enough built-in knowledge to survive
  - The ability to learn
- In practice this can be a bit slippery

# Some Types of Agent (1)

#### 1. Table-driven agents

- Use a percept sequence/action table to find the next action
- Implemented by a (large) **lookup table**

#### 2. Simple reflex agents

- Based on condition-action rules
- Implemented with a **production system**
- Stateless devices which do not have memory of past world states

11

### 3. Agents with memory

- Have internal state
- Used to keep track of past states of the world

# Some Types of Agent

### 4. Agents with goals

- Have internal state information, plus
- Goal information about desirable situations
- Agents of this kind can take future events into consideration

### 5. Utility-based agents

- Base their decisions on classic **axiomatic utility theory**
- In order to act rationally

# (1) Table-Driven Agents

#### • Table lookup of:

- Percept-action pairs mapping
- Every possible perceived state  $\leftarrow \rightarrow$  optimal action for that state

#### • Problems:

- **Too big** to generate and store
  - Chess has about  $10^{120}$  states, for example
- No knowledge of **non-perceptual** parts of the current state
  - E.g., background knowledge
- Not **adaptive to changes** in the environment
  - Change by updating entire table
- No looping
  - Can't make actions conditional on previous actions/states

### (1) Table-Driven/Reflex Agent



# (2) Simple Reflex Agents

#### • Rule-based reasoning

- To map from percepts to optimal action
- Each rule handles a collection of perceived states

#### Problems

- Still usually too big to generate and to store
- Still no knowledge of non-perceptual parts of state
- Still not adaptive to changes in the environment
  - Change by updating collection of rules
- Actions still not conditional on previous state

# (3) Agents With Memory

- Encode "internal state" of the world
  - Used to remember the past (earlier percepts)
- Why?
  - Sensors rarely give the whole state of the world at each input
  - So, must build up environment model over time
  - "State" is used to encode different "world states"
  - Different worlds generate the same (immediate) percepts
- Requires ability to represent **change** in the world
  - Could represent just the latest state
  - But then can't reason about hypothetical courses of action
- Example: Rodney Brooks' Subsumption Architecture.

# (3) Architecture for anAgent with Memory



# (4) Goal-Based Agents

- Choose actions that achieve a goal
  Which may be given, or computed by the agent
- A goal is a **description of a desirable state** 
  - Need goals to decide what situations are "good"
  - Keeping track of the current state is often not enough
- Deliberative instead of reactive
  - Must consider sequences of actions to get to goal
  - Involves thinking about the future
  - "What will happen if I do...?"

### (4) Architecture for Goal-Based Agent



# (5) Utility-Based Agents

- How to choose from multiple alternatives?
  - What action is best?
- What state is best?
  - Goals  $\rightarrow$  crude distinction between "happy" / "unhappy" states
  - Often need a more general performance measure (how "happy"?)
- Utility function gives success or happiness at a given state
- Can compare choice between:
  - Conflicting goals
  - Likelihood of success
  - Importance of goal (if achievement is uncertain)

### (4) Architecture for a complete utility-based agent



### Properties of Environments

These should be familiar!

#### Fully observable/Partially observable

- If an agent's sensors give it access to the **complete state of the environment**, the environment is **fully observable**
- Such environments are convenient
  - No need to keep track of the changes in the environment
  - No need to guess or reason about non-observed things
- Such environments are also rare in practice

# Properties of Environments

#### • Deterministic/Stochastic.

- An environment is **deterministic** if:
  - The next state of the environment is completely determined by
    - The current state of the environment
    - The action of the agent
- In a **stochastic** environment, there are multiple, unpredictable outcomes.
- In a fully observable, deterministic environment, the agent need not deal with uncertainty.

# Properties of Environments

#### • Episodic/Sequential

- An **episodic** environment means that subsequent episodes do not depend on what actions occurred in previous episodes.
- In a **sequential** environment, the agent engages in a series of connected episodes.
- Such environments do not require the agent to plan ahead.

#### • Static/Dynamic

- A static environment does not change while the agent is thinking.
- The passage of time as an agent deliberates is irrelevant.
- The agent doesn't need to observe the world during deliberation.

# Properties of Environments III

#### • Discrete/Continuous

• If the number of distinct percepts and actions is limited, the environment is **discrete**, otherwise it is **continuous**.

#### Single agent/Multi-agent

- If the environment contains other intelligent agents, the agent needs to be concerned about strategic, game-theoretic aspects of the environment (for either cooperative *or* competitive agents)
- Most engineering environments don't have multi-agent properties, whereas most social and economic systems get their complexity from the interactions of (more or less) rational agents.

|                      | Fully<br>observable? | Deterministic? | Episodic? | Static? | Discrete? | Single<br>agent? |
|----------------------|----------------------|----------------|-----------|---------|-----------|------------------|
| Solitaire            |                      |                |           |         |           |                  |
| Backgammon           |                      |                |           |         |           |                  |
| Taxi driving         |                      |                |           |         |           |                  |
| Internet<br>shopping |                      |                |           |         |           |                  |
| Medical<br>diagnosis |                      |                |           |         |           |                  |
|                      |                      |                | •         |         |           |                  |

|                      | Fully<br>observable? | Deterministic? | Episodic? | Static? | Discrete? | Single agent? |
|----------------------|----------------------|----------------|-----------|---------|-----------|---------------|
| Solitaire            | No                   | Yes            | Yes       | Yes     | Yes       | Yes           |
| Backgammon           |                      |                |           |         |           |               |
| Taxi driving         |                      |                |           |         |           |               |
| Internet<br>shopping |                      |                |           |         |           |               |
| Medical<br>diagnosis |                      |                |           |         |           |               |

|                      | Fully<br>observable? | Deterministic? | Episodic? | Static? | Discrete? | Single agent? |
|----------------------|----------------------|----------------|-----------|---------|-----------|---------------|
| Solitaire            | No                   | Yes            | Yes       | Yes     | Yes       | Yes           |
| Backgammon           | Yes                  | No             | No        | Yes     | Yes       | No            |
| Taxi driving         |                      |                |           |         |           |               |
| Internet<br>shopping |                      |                |           |         |           |               |
| Medical<br>diagnosis |                      |                |           |         |           |               |

29

|                      | Fully<br>observable? | Deterministic? | Episodic? | Static? | Discrete? | Single agent? |
|----------------------|----------------------|----------------|-----------|---------|-----------|---------------|
| Solitaire            | No                   | Yes            | Yes       | Yes     | Yes       | Yes           |
| Backgammon           | Yes                  | No             | No        | Yes     | Yes       | No            |
| Taxi driving         | No                   | No             | No        | No      | No        | No            |
| Internet<br>shopping |                      |                |           |         |           |               |
| Medical<br>diagnosis |                      |                |           |         |           |               |

|                      | Fully<br>observable? | Deterministic? | Episodic? | Static? | Discrete? | Single agent? |
|----------------------|----------------------|----------------|-----------|---------|-----------|---------------|
| Solitaire            | No                   | Yes            | Yes       | Yes     | Yes       | Yes           |
| Backgammon           | Yes                  | No             | No        | Yes     | Yes       | No            |
| Taxi driving         | No                   | No             | No        | No      | No        | No            |
| Internet<br>shopping | No                   | No             | No        | No      | Yes       | No            |
| Medical<br>diagnosis |                      |                |           |         |           |               |

|                      | Fully<br>observable? | Deterministic? | Episodic? | Static? | Discrete? | Single agent? |
|----------------------|----------------------|----------------|-----------|---------|-----------|---------------|
| Solitaire            | No                   | Yes            | Yes       | Yes     | Yes       | Yes           |
| Backgammon           | Yes                  | No             | No        | Yes     | Yes       | No            |
| Taxi driving         | No                   | No             | No        | No      | No        | No            |
| Internet<br>shopping | No                   | No             | No        | No      | Yes       | No            |
| Medical<br>diagnosis | No                   | No             | No        | No      | No        | Yes           |

|                      | Fully<br>observable? | Deterministic? | Episodic? | Static? | Discrete? | Single agent? |
|----------------------|----------------------|----------------|-----------|---------|-----------|---------------|
| Solitaire            | No                   | Yes            | Yes       | Yes     | Yes       | Yes           |
| Backgammon           | Yes                  | No             | No        | Yes     | Yes       | No            |
| Taxi driving         | No                   | No             | No        | No      | No        | No            |
| Internet<br>shopping | No                   | No             | No        | No      | Yes       | No            |
| Medical<br>diagnosis | No                   | No             | No        | No      | No        | Yes           |

 $\rightarrow$  Lots of (most?) real-world domains fall into the hardest case!  $\leftarrow$ 

33

# Summary: Agents

#### • An agent:

- Perceives and acts in an environment
- Has an architecture
- Is implemented by an agent program(s)

#### • An ideal agent:

- Always chooses the "right" action
  - Which is, that which maximizes its expected performance
- Given its percept sequence so far!

#### • An autonomous agent:

- Uses its own experience to learn and make decisions
- Rather than built-in knowledge
- I.e., a priori world knowledge by the designer

# Summary: Agents

- **Representing knowledge** is important for successful agent design
  - Percepts, actions and their effects, constraints, ...
- The most challenging environments are:
  - Partially observable
  - Stochastic
  - Sequential
  - Dynamic
  - Continuous
  - Contain multiple intelligent agents