First-Order Logic \& Inference

AI Class 19 (Ch. 8.1-8.3, 9)

Bookkeeping

- Midterms returned today
- HW4 due 11/7 @ 11:59

First-Order Logic

Chapter 8

First-Order Logic

- First-order logic (FOL) models the world in terms of
- Objects, which are things with individual identities
- Properties of objects that distinguish them from other objects
- Relations that hold among sets of objects
- Functions, which are a subset of relations where there is only one "value" for any given "input"
- Examples:
- Objects: Students, lectures, companies, cars
- Relations: Brother-of, bigger-than, outside, part-of, has-color, occurs-after, owns, visits, precedes, ...
- Properties: blue, oval, even, large, ...
- Functions: father-of, best-friend, second-half, one-more-than ...

Sentences: Terms and Atoms

- A term (denoting a real-world individual) is:
- A constant symbol: John, or
- A variable symbol: x, or
- An n-place function of n terms
x and $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ are terms, where each x_{i} is a term is-a(John, Professor)
- A term with no variables is a ground term.
- An atomic sentence is an n-place predicate of n terms
- Has a truth value (t or f)

Sentences: Terms and Atoms

- A complex sentence is formed from atomic sentences connected by the logical connectives:
$\neg \mathrm{P}, \mathrm{P} \vee \mathrm{Q}, \mathrm{P} \wedge \mathrm{Q}, \mathrm{P} \rightarrow \mathrm{Q}, \mathrm{P} \leftrightarrow \mathrm{Q}$ where P and Q are sentences
has-a(x, Bachelors) \wedge is- $a(x$, human $)$
does NOT SAY everyone with a bachelors' is human
has-a(John, Bachelors) ^is-a(John, human)
has-a(Mary, Bachelors) ^is-a(Mary, human)

Quantifiers

- Universal quantification

- $\forall \mathrm{x} P(\mathrm{x})$ means that P holds for all values of x in its domain
- States universal truths
- E.g.: $\forall x \operatorname{dolphin}(x) \rightarrow$ mammal (x)
- Existential quantification
- $\exists \mathrm{x} P(\mathrm{x})$ means that P holds for some value of x in the domain associated with that variable
- Makes a statement about some object without naming it
- E.g., $\exists x$ mammal $(x) \wedge \operatorname{lays-eggs}(x)$

Sentences: Quantification

- Quantified sentences adds quantifiers \forall and \exists $\forall x$ has- $a(x$, Bachelors $) \rightarrow i s-a(x$, human) $\exists x$ has-a(x, Bachelors) $\forall x \exists y \operatorname{Loves}(x, y)$

Everyone who has a bachelors' is human.
There exists some who has a bachelors'.
Everybody loves somebody.

Sentences: Well-Formedness

- A well-formed formula (wff) is a sentence containing no "free" variables. That is, all variables are "bound" by universal or existential quantifiers.
- $(\forall x) \mathrm{P}(x, y)$ has x bound as a universally quantified variable, but y is free.

Quantifiers: Uses

- Universal quantifiers often used with "implies" to form "rules":
$(\forall \mathrm{x}) \operatorname{student}(\mathrm{x}) \rightarrow \operatorname{smart}(\mathrm{x})$
"All students are smart"
- Universal quantification rarely* used to make blanket statements about every individual in the world:
$(\forall \mathrm{x}) \operatorname{student}(\mathrm{x}) \wedge \operatorname{smart}(\mathrm{x})$
"Everyone in the world is a student and is smart"

Quantifiers: Uses

- Existential quantifiers are usually used with "and" to specify a list of properties about an individual:
($\exists \mathrm{x}$) student $(\mathrm{x}) \wedge \operatorname{smart}(\mathrm{x})$
"There is a student who is smart"
- A common mistake is to represent this English sentence as the FOL sentence:
($\exists \mathrm{x}$) student $(\mathrm{x}) \rightarrow$ smart(x)
- But what happens when there is a person who is not a student?

Quantifier Scope

- Switching the order of universal quantifiers does not change the meaning:

$$
\text { - }(\forall x)(\forall y) P(x, y) \leftrightarrow(\forall y)(\forall x) P(x, y)
$$

- Similarly, you can switch the order of existential quantifiers:

$$
\text { - }(\exists \mathrm{x})(\exists \mathrm{y}) \mathrm{P}(\mathrm{x}, \mathrm{y}) \leftrightarrow(\exists \mathrm{y})(\exists \mathrm{x}) \mathrm{P}(\mathrm{x}, \mathrm{y})
$$

- Switching the order of universals and existentials does change meaning:
- Everyone likes someone: $(\forall x)(\exists y)$ likes (x, y)
- Someone is liked by everyone: $(\exists \mathrm{y})(\forall \mathrm{x})$ likes (x, y)

Connections between All and Exists

We can relate sentences involving \forall and \exists using De Morgan's laws:

$$
\begin{aligned}
& (\forall \mathrm{x}) \neg \mathrm{P}(\mathrm{x}) \leftrightarrow \neg(\exists \mathrm{x}) \mathrm{P}(\mathrm{x}) \\
& \neg(\forall \mathrm{x}) \mathrm{P} \leftrightarrow(\exists \mathrm{x}) \neg \mathrm{P}(\mathrm{x}) \\
& (\forall \mathrm{x}) \mathrm{P}(\mathrm{x}) \leftrightarrow \neg(\exists \mathrm{x}) \neg \mathrm{P}(\mathrm{x}) \\
& (\exists \mathrm{x}) \mathrm{P}(\mathrm{x}) \leftrightarrow \neg(\forall \mathrm{x}) \neg \mathrm{P}(\mathrm{x})
\end{aligned}
$$

Quantified Inference Rules

- Universal instantiation
- $\forall \mathrm{x} \mathrm{P}(\mathrm{x}) \therefore \mathrm{P}(\mathrm{A})$
- Universal generalization
- $\mathrm{P}(\mathrm{A}) \wedge \mathrm{P}(\mathrm{B}) \ldots \therefore \forall \mathrm{x} P(\mathrm{x})$
- Existential instantiation
- $\exists \mathrm{x}$ P(x) $\therefore \mathrm{P}(\mathrm{F})$
\leftarrow skolem constant \mathbf{F}
- Existential generalization
- $\mathrm{P}(\mathrm{A}) \therefore \exists \mathrm{x} P(\mathrm{x})$

Universal Instantiation (a.k.a. Universal Elimination)

- If $(\forall x) P(x)$ is true, then $P(C)$ is true, where C is any constant in the domain of x
- Example:
$(\forall x)$ eats(Ziggy, $x) \Rightarrow$ eats(Ziggy, IceCream)
- The variable symbol can be replaced by any ground term, i.e., any constant symbol or function symbol applied to ground terms only

Existential Instantiation (a.k.a. Existential Elimination)

- Variable is replaced by a brand-new constant
- I.e., not occurring in the KB
- From ($\exists \mathrm{x}$) P(x) infer P(c)
- Example:
- ($\exists x)$ eats(Ziggy, $x) \rightarrow$ eats(Ziggy, Stuff)
- "Skolemization"
- Stuff is a skolem constant
- Easier than manipulating the existential quantifier

Existential Generalization (a.k.a. Existential Introduction)

- If $\mathrm{P}(\mathrm{c})$ is true, then $(\exists \mathrm{x}) \mathrm{P}(\mathrm{x})$ is inferred.
- Example
eats(Ziggy, IceCream) $\Rightarrow(\exists x)$ eats(Ziggy, x)
- All instances of the given constant symbol are replaced by the new variable symbol
- Note that the variable symbol cannot already exist anywhere in the expression

Translating English to FOL

Every gardener likes the sun.
$\forall \mathrm{x}$ gardener(x) \rightarrow likes(x, Sun)
You can fool some of the people all of the time.
$\exists \mathrm{x} \forall \mathrm{t}$ person $(\mathrm{x}) \wedge$ time $(\mathrm{t}) \rightarrow \operatorname{can}-$ fool (x, t)
You can fool all of the people some of the time.
$\forall x \exists t($ person $(x) \rightarrow \operatorname{time}(\mathrm{t}) \wedge \operatorname{can}-$ fool $(\mathrm{x}, \mathrm{t}))$
$\forall x($ person $(x) \rightarrow \exists \mathrm{t}(\operatorname{time}(\mathrm{t}) \wedge \operatorname{can}-\mathrm{fool}(\mathrm{x}, \mathrm{t}))$
\qquad Equivalent

All purple mushrooms are poisonous
$\forall \mathrm{x}($ mushroom $(\mathrm{x}) \wedge \operatorname{purple}(\mathrm{x})) \rightarrow$ poisonous (x)

Translating English to FOL

No purple mushroom is poisonous.

$\neg \exists \mathrm{x}$ purple $(\mathrm{x}) \wedge$ mushroom $(\mathrm{x}) \wedge$ poisonous (x)
$\forall \mathrm{x}(\operatorname{mushroom}(\mathrm{x}) \wedge$ purple $(\mathrm{x})) \rightarrow \neg$ poisonous $(\mathrm{x}) \longleftarrow$ Equivalent
There are exactly two purple mushrooms.
$\exists \mathrm{x} \exists \mathrm{y}$ mushroom $(\mathrm{x}) \wedge$ purple $(\mathrm{x}) \wedge$ mushroom $(\mathrm{y}) \wedge \operatorname{purple}(\mathrm{y}) \wedge \neg(\mathrm{x}=\mathrm{y}) \wedge \forall \mathrm{z}$ $(\operatorname{mushroom}(\mathrm{z}) \wedge \operatorname{purple}(\mathrm{z})) \rightarrow((\mathrm{x}=\mathrm{z}) \vee(\mathrm{y}=\mathrm{z}))$

Clinton is not tall.
\neg tall(Clinton)
X is above Y iff X is on directly on top of Y or there is a pile of one or more other objects directly on top of one another starting with \mathbf{X} and ending with \mathbf{Y}.
$\forall \mathrm{x} \forall \mathrm{y}$ above $(\mathrm{x}, \mathrm{y}) \leftrightarrow(\mathrm{on}(\mathrm{x}, \mathrm{y}) \vee \exists \mathrm{z}(\mathrm{on}(\mathrm{x}, \mathrm{z}) \wedge$ above $(\mathrm{z}, \mathrm{y})))$

Semantics of FOL

- Domain M: the set of all objects in the world (of interest)
- Interpretation I: includes
- Assign each constant to an object in M
- Define each function of n arguments as a mapping $\mathrm{M}^{\mathrm{n}}=>\mathrm{M}$
- Define each predicate of n arguments as a mapping $\mathrm{M}^{\mathrm{n}}=>\{\mathrm{T}, \mathrm{F}\}$
- Therefore, every ground predicate with any instantiation will have a truth value
- In general there is an infinite number of interpretations because $|\mathrm{M}|$ is infinite
- Define logical connectives: $\sim, \wedge, \mathrm{v},=>,<=>$ as in PL
- Define semantics of $(\forall x)$ and $(\exists x)$
- $(\forall x) P(x)$ is true iff $P(x)$ is true under all interpretations
- $(\exists x) P(x)$ is true iff $P(x)$ is true under some interpretation
- Model: an interpretation of a set of sentences such that every sentence is True
- A sentence is
- satisfiable if it is true under some interpretation
- valid if it is true under all possible interpretations
- inconsistent if there does not exist any interpretation under which the sentence is true
- Logical consequence: $\mathrm{S} \mid=\mathrm{X}$ if all models of S are also models of X

Axioms, Definitions and Theorems

- Axioms are facts and rules that attempt to capture all of the (important) facts and concepts about a domain; axioms can be used to prove theorems
- Mathematicians don't want any unnecessary (dependent) axioms -ones that can be derived from other axioms
- Dependent axioms can make reasoning faster, however
- Choosing a good set of axioms for a domain is a kind of design problem
- A definition of a predicate is of the form " $\mathrm{p}(\mathrm{X}) \leftrightarrow \ldots$..." and can be decomposed into two parts
\cdot Necessary description: " $\mathrm{p}(\mathrm{x}) \rightarrow$..."
- Sufficient description " $\mathrm{p}(\mathrm{x}) \leftarrow \ldots$..,
- Some concepts don't have complete definitions (e.g., person(x))

More on Definitions

- Examples: define father(x, y) by parent($\mathrm{x}, \mathrm{y})$ and male (x)
- parent(x, y) is a necessary (but not sufficient) description of father(x, y)
- father($\mathrm{x}, \mathrm{y}) \rightarrow \operatorname{parent}(\mathrm{x}, \mathrm{y})$
- parent $(x, y)^{\wedge} \operatorname{male}(x)^{\wedge} \operatorname{age}(x, 35)$ is a sufficient (but not necessary) description of father (x, y) :
father $(x, y) \leftarrow \operatorname{parent}(x, y)^{\wedge} \operatorname{male}(x) \wedge \operatorname{age}(x, 35)$
- parent $(x, y)^{\wedge} \operatorname{male}(x)$ is a necessary and sufficient description of father (x, y)

$$
\operatorname{parent}(\mathrm{x}, \mathrm{y})^{\wedge} \operatorname{male}(\mathrm{x}) \leftrightarrow \text { father }(\mathrm{x}, \mathrm{y})
$$

Higher-Order Logic

- FOL only allows to quantify over variables, and variables can only range over objects.
- HOL allows us to quantify over relations
- Example: (quantify over functions)
"two functions are equal iff they produce the same value for all arguments" $\forall \mathrm{f} \forall \mathrm{g}(\mathrm{f}=\mathrm{g}) \leftrightarrow(\forall \mathrm{xf}(\mathrm{x})=\mathrm{g}(\mathrm{x}))$
- Example: (quantify over predicates)
$\forall \mathrm{r}$ transitive $(\mathrm{r}) \rightarrow(\forall \mathrm{xyz}) \mathrm{r}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{r}(\mathrm{y}, \mathrm{z}) \rightarrow \mathrm{r}(\mathrm{x}, \mathrm{z}))$
- More expressive, but undecidable.

Expressing Uniqueness

- Sometimes we want to say that there is a single, unique object that satisfies a certain condition
- "There exists a unique x such that king(x) is true"
- $\exists x \operatorname{king}(x) \wedge \forall y(\operatorname{king}(y) \rightarrow x=y)$
- $\exists \mathrm{x}$ king $(\mathrm{x}) \wedge \neg \exists \mathrm{y}(\mathrm{king}(\mathrm{y}) \wedge \mathrm{x} \neq \mathrm{y})$
- $3!x \operatorname{king}(x)$
- "Every country has exactly one ruler"
- $\forall c$ country $(\mathrm{c}) \rightarrow \exists$! r ruler($\mathrm{c}, \mathrm{r})$
- Iota operator: " $\mathrm{tx} \mathrm{P}(\mathrm{x})$ " means "the unique x such that $\mathrm{p}(\mathrm{x})$ is true" - "The unique ruler of Freedonia is dead"
- $\operatorname{dead}(\llcorner\mathrm{x}$ ruler(freedonia, x$)$)

