Machine Learning II: Beyond Decision Trees
 AI Class 15 (Ch. 20.1-20.2)

Data D

Bookkeeping

- Midterm Tuesday!
- Project design: 10/31@ 11:59
- If you have not read the project description carefully, do so!
- Phase II will be fleshed out after your designs are in.
- Blackboard bug - assume single turnins. :-/
- A note on changing grades
- Short version: don't ask the grader or TA. Questions are okay, but grade change requests go through me
- HW4 out by 11:59; due 11/7 @ 11:59

Today's Class

- Extensions to Decision Trees
- Sources of error
- Evaluating learned models
- Bayesian Learning
- MLA, MLE, MAP
- Bayesian Networks I

Information Gain

- Concept: make decisions that increase the homogeneity of the data subsets (for outcomes)
- Good: Bad:
- Information gain is based on:
- Decrease in entropy
- After a dataset is split on an attribute.
- \rightarrow High homogeneity - e.g., likelihood samples will have the same class (outcome)

Extensions of the Decision Tree Learning Algorithm

- Using gain ratios
- Real-valued data
- Noisy data and overfitting
- Generation of rules
- Setting parameters
- Cross-validation for experimental validation of performance
- C4.5 is an extension of ID3 that accounts for unavailable values, continuous attribute value ranges, pruning of decision trees, rule derivation, and so on

Using Gain Ratios

- Information gain favors attributes with a large number of values
- If we have an attribute D that has a distinct value for each record, then $\operatorname{Info}(\mathrm{D}, \mathrm{T})$ is 0 , thus $\operatorname{Gain}(\mathrm{D}, \mathrm{T})$ is maximal
- To compensate, use the following ratio instead of Gain: GainRatio(D,T) = Gain(D,T) / SplitInfo(D,T)
- SplitInfo(D, T) is the information due to the split of T on the basis of value of categorical attribute D SplitInfo(D,T) $=\mathrm{I}\left(\left|\mathrm{T}_{1}\right| /|\mathrm{T}|,\left|\mathrm{T}_{2}\right| /|\mathrm{T}|, . .,\left|\mathrm{T}_{\mathrm{m}}\right| /|\mathrm{T}|\right)$
where $\left\{\mathrm{T}_{1}, \mathrm{~T}_{2}, . . \mathrm{T}_{\mathrm{m}}\right\}$ is the partition of T induced by value of D

Real-Valued Data

- Select a set of thresholds defining intervals
- Each interval becomes a discrete value of the attribute
- How?
- Use simple heuristics...
- Always divide into quartiles
- Use domain knowledge...
- Divide age into infant (0-2), toddler (3-5), school-aged (5-8)
- Or treat this as another learning problem
- Try a range of ways to discretize the continuous variable and see which yield "better results" w.r.t. some metric
- E.g., try midpoint between every pair of values

Noisy Data

- Many kinds of "noise" can occur in the examples:
- Two examples have same attribute/value pairs, but different classifications
- Some values of attributes are incorrect
- Errors in the data acquisition process, the preprocessing phase, //
- Classification is wrong (e.g., + instead of -) because of some error
- Some attributes are irrelevant to the decision-making process, e.g., color of a die is irrelevant to its outcome
- Some attributes are missing (are pangolins bipedal?)

Overfitting

- Overfitting: coming up with a model that is TOO specific to your training data
- Does well on training set but not new data
- How can this happen?
- Too little training data
- Irrelevant attributes
- high-dimensional (many attributes) hypothesis space \rightarrow meaningless regularity in the data irrelevant to important, distinguishing features
- Fix by pruning lower nodes in the decision tree
- For example, if Gain of the best attribute at a node is below a threshold, stop and make this node a leaf rather than generating children nodes

Pruning Decision Trees

- Replace a whole subtree by a leaf node
- If: a decision rule establishes that he expected error rate in the subtree is greater than in the single leaf. E.g.,
- Training: one training red success and two training blue failures
- Test: three red failures and one blue success
- Consider replacing this subtree by a single Failure node. (leaf)
- After replacement we will have only two errors instead of five:

14

Converting Decision Trees to Rules

- It is easy to derive a rule set from a decision tree:
- Write a rule for each path in the decision tree from the root to a leaf
- Left-hand side is label of nodes and labels of arcs
- The resulting rules set can be simplified:
- Let LHS be the left hand side of a rule
- Let LHS' be obtained from LHS by eliminating some conditions
- We can replace LHS by LHS' in this rule if the subsets of the training set that satisfy respectively LHS and LHS' are equal
- A rule may be eliminated by using metaconditions such as "if no other rule applies"

Measuring Model Quality

- How good is a model?
- Predictive accuracy
- False positives / false negatives for a given cutoff threshold
- Loss function (accounts for cost of different types of errors)
- Area under the (ROC) curve
- Minimizing loss can lead to problems with overfitting

Measuring Model Quality

- Training error
- Train on all data; measure error on all data
- Subject to overfitting (of course we'll make good predictions on the data on which we trained!)
- Regularization
- Attempt to avoid overfitting
- Explicitly minimize the complexity of the function while minimizing loss
- Tradeoff is modeled with a regularization parameter

```
1 8
```


Cross-Validation

- Holdout cross-validation:
- Divide data into training set and test set
- Train on training set; measure error on test set
- Better than training error, since we are measuring generalization to new data
- To get a good estimate, we need a reasonably large test set
- But this gives less data to train on, reducing our model quality!

Cross-Validation, cont.

- k-fold cross-validation:
- Divide data into k folds
- Train on $k-1$ folds, use the k th fold to measure error
- Repeat k times; use average error to measure generalization accuracy
- Statistically valid and gives good accuracy estimates
- Leave-one-out cross-validation (LOOCV)
- k-fold cross validation where $k=N$ (test data $=1$ instance!)
- Quite accurate, but also quite expensive, since it requires building N models

Bayesian Learning

Chapter 20.1-20.2

Naïve Bayes

- Use Bayesian modeling
- Make the simplest possible independence assumption:
- Each attribute is independent of the values of the other attributes, given the class variable
- In our restaurant domain: Cuisine is independent of Patrons, given a decision to stay (or not)

Bayesian Formulation

- The probability of class C given F_{1}, \ldots, F_{n}

$$
\begin{aligned}
\mathbf{p}\left(\mathbf{C} \mid \mathbf{F}_{1}, \ldots, \mathbf{F}_{\mathrm{n}}\right) & =\mathbf{p}(\mathbf{C}) \mathbf{p}\left(\mathbf{F}_{1}, \ldots, \mathbf{F}_{\mathrm{n}} \mid \mathbf{C}\right) / \mathbf{P}\left(\mathbf{F}_{1}, \ldots, \mathbf{F}_{\mathrm{n}}\right) \\
& =\alpha \mathbf{p}(\mathbf{C}) \mathbf{p}\left(\mathbf{F}_{1}, \ldots, \mathbf{F}_{\mathrm{n}} \mid \mathbf{C}\right)
\end{aligned}
$$

- Assume that each feature F_{i} is conditionally independent of the other features given the class C . Then:

$$
\mathrm{p}\left(\mathrm{C} \mid \mathrm{F}_{1}, \ldots, \mathrm{~F}_{\mathrm{n}}\right)=\alpha \mathrm{p}(\mathrm{C}) \Pi_{\mathrm{i}} \mathrm{p}\left(\mathrm{~F}_{\mathrm{i}} \mid \mathrm{C}\right)
$$

- We can estimate each of these conditional probabilities from the observed counts in the training data:

$$
\mathrm{p}\left(\mathrm{~F}_{\mathrm{i}} \mid \mathrm{C}\right)=\mathrm{N}\left(\mathrm{~F}_{\mathrm{i}} \wedge \mathrm{C}\right) / \mathrm{N}(\mathrm{C})
$$

- One subtlety of using the algorithm in practice: When your estimated probabilities are zero, ugly things happen
- The fix: Add one to every count (aka "Laplacian smoothing")

Naive Bayes: Example

- p(Wait I Cuisine, Patrons, Rainy?)
$=\alpha \mathrm{p}$ (Cuisine \wedge Patrons \wedge Rainy? I Wait)
$=\alpha \mathrm{p}$ (Wait) p (Cuisine I Wait) p (Patrons I Wait) p (Rainy? I Wait)
naive Bayes assumption: is it reasonable?

Naive Bayes: Analysis

- Naïve Bayes is amazingly easy to implement (once you understand the bit of math behind it)
- Naïve Bayes can outperform many much more complex algorithms-it's a baseline that should pretty much always be used for comparison
- Naive Bayes can't capture interdependencies between variables (obviously)-for that, we need Bayes nets!

Learning Bayesian Networks

Bayesian Learning: Bayes' Rule

- Given some model space (set of hypotheses h_{i}) and evidence (data D):
- $\mathrm{P}\left(\mathrm{h}_{\mathrm{i}} \mid \mathrm{D}\right)=\alpha \mathrm{P}\left(\mathrm{D} \mid \mathrm{h}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{h}_{\mathrm{i}}\right)$
- We assume observations are independent of each other, given a model (hypothesis), so:
- $\mathrm{P}\left(\mathrm{h}_{\mathrm{i}} \mid \mathrm{D}\right)=\alpha \prod_{\mathrm{j}} \mathrm{P}\left(\mathrm{d}_{\mathrm{j}} \mid \mathrm{h}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{h}_{\mathrm{i}}\right)$
- To predict the value of some unknown quantity X (e.g., the class label for a future observation):

Bayesian Learning, 3 Ways

- BMA (Bayesian Model Averaging)
- Don't just choose one hypothesis; instead, make predictions based on the weighted average of all hypotheses (or some set of best hypotheses)
- MAP (Maximum A Posteriori) hypothesis
- Choose hypothesis with highest a posteriori probability, given data
- Maximize p(\mathbf{h}_{i} | D)
- Generally easier than Bayesian learning
- Closer to Bayesian prediction as more data arrives
- MLE (Maximum Likelihood Estimate)
- Assume all hypotheses are equally likely a priori; best hypothesis maximizes the likelihood (i.e., probability of data given hypothesis)
- Maximize $\mathbf{p}\left(\mathbf{D} \mid \mathbf{h}_{\mathrm{i}}\right)$

Bayesian Learning

- BMA (Bayesian Model Averaging) average predictions of hypotheses
- MAP (Maximum A Posteriori) hypothesis Maximize $p\left(\mathrm{~h}_{\mathrm{i}} \mid \mathrm{D}\right)$
- MLE (Maximum Likelihood Estimate) Maximize $p\left(D \mid h_{i}\right)$
- MDL (Minimum Description Length) principle: Use some encoding to model the complexity of the hypothesis, and the fit of the data to the hypothesis, then minimize the overall description of $h_{i}+D$

Learning Bayesian Networks

- Given training set $\boldsymbol{D}=\{\boldsymbol{x}[1], \ldots, \boldsymbol{x}[\boldsymbol{M}]\}$
- Find B that best matches \boldsymbol{D}
- model selection
- parameter estimation

Data D

Parameter Estimation

- Assume known structure
- Goal: estimate BN param independent and identically distributed (i.i.d.) if each random variable has the same probability distribution as the others and all are mutually independent
- entries in local probability moucts, 1 (1 | 1 arty
- A good parameterization \mathbf{q} is likely to ger observed data:

$$
L(\theta: D)=P(D \mid \theta)=\prod_{m} P(x[m] \mid \theta)
$$

- Maximum Likelihood Estimation (MLE) Principle: Choose \mathbf{q}^{*} so as to maximize L

Parameter Estimation II

- The likelihood decomposes according to the structure of the network
\rightarrow we get a separate estimation task for each parameter
- The MLE (maximum likelihood estimate) solution:
- for each value x of a node X
- and each instantiation \boldsymbol{u} of $\operatorname{Parents}(X)$

$$
\theta_{x \mid u}^{*}=\frac{N(x, u)}{N(u)} \quad \text { sufficient statistics }
$$

- Just need to collect the counts for every combination of parents and children observed in the data
- MLE is equivalent to an assumption of a uniform prior over parameter values

Sufficient Statistics: Example

Why are the counts sufficient?

Model Selection

Goal: Select the best network structure, given the data Input:

- Training data
- Scoring function

Output:

- A network that maximizes the score

Handling Missing Data

- Suppose that in some cases, we observe earthquake, alarm, light-level, and moon-phase, but not burglary
- Should we throw that data away??
- Idea: Guess the missing values based on the other data

EM (Expectation Maximization)

- Guess probabilities for nodes with missing values (e.g., based on other observations)
- Compute the probability distribution over the missing values, given our guess
- Update the probabilities based on the guessed values
- Repeat until convergence

EM Example

- Suppose we have observed Earthquake and Alarm but not Burglary for an observation on November 27
- We estimate the CPTs based on the rest of the data
- We then estimate P(Burglary) for November 27 from those CPTs
- Now we recompute the CPTs as if that estimated value had been observed
- Repeat until convergence!

