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Today’s Class

* Making Decisions Under Uncertainty
Tracking Uncertainty over Time
Decision Making under Uncertainty

* Project groups, part 1 < ?

Introduction

* The world is not a well-defined place.

* Sources of uncertainty
Uncertain inputs: What’s the temperature?

Uncertain (imprecise) definitions: Is Obama a good
president?

Uncertain (unobserved) states: Where is the pit?

 There is uncertainty in inferences

If T have a blistery, itchy rash and was gardening all
weekend I probably have poison ivy




Sources of Uncertainty

« Uncertain inputs *  Uncertain outputs
* Default reasoning (even

* Missing data deduction) is uncertain
* Noisy data

* Abduction & induction
. inherently uncertain
* Uncertain knowledge
+ Incomplete deductive
© >1 cause > >1 effect inference can be uncertain

" Incomplete knowledge of * Derived result is formally

causality correct, but wrong in real
* Probabilistic effects world

Probabilistic reasoning only gives probabilistic results

(summarizes uncertainty from various sources)
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Reasoning Under Uncertainty

* People make successful decisions all the time
anyhow.

- How?

* More formally: how do we do reasoning under
uncertainty, with inexact knowledge?

 Step one: understanding what we know




MODELING
UNCERTAINTY
OVER TIME

States and Observations

We don’t have a continuous view of world
+ People don'’t either!

We see things as a series of snapshots

Observations, associated with time slices

° tl’tZ’tS’ e

Each snapshot contains all variables, observed or not
< X, = (unobserved) state variables at time t; observation at t is E,

This is world state at time t
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Temporal Probabilistic Agent

SEensors

N

actuators

Time and Uncertainty

* The world changes

« Examples: diabetes management, traffic monitoring
» Tasks: track it; predict it

* Basic idea:
+ Copy state and evidence variables for each time step
© Model uncertainty in change over time
 Incorporate new observations as they arrive




Time and Uncertainty

Basic idea:
Copy state and evidence variables for each time step
Model uncertainty in change over time

Incorporate new observations as they arrive

X, = unobservable state variables at time t:
BloodSugar,, StomachContents,

E, = evidence variables at time t:
MeasuredBloodSugar,, PulseRate,, FoodEaten,

Assuming discrete time steps

States, Slightly More formally

Process of change is viewed as series of snapshots
Time slices
Each describing the state of the world at a particular time

Each time slice is represented by a set of random
variables indexed by t:

1. the set of unobservable state variables X,

2.  the set of observable evidence variables E,

The observation at time t is E, = e, for some set of
values e,

X, denotes the set of variables from X, to X,

12




Transition and Sensor Models

Transition model
Models how the world changes over time

How big
can this get?

Specifies a probability distribution
Over state variables at time t }

Given values at previous times PX, 1 Xo,.1)

Sensor model

Models how evidence gets its values (sensor data)
* E.g.: BloodSugar, > MeasuredBloodSugar,

Markov Assumption

Markov Assumption:
X, depends on some finite (usually fixed) number of previous X;’s

First-order Markov process: P(X,|X..;) = P(X,X,)

k™ order: depends on previous & time steps

& o0

Sensor Markov assumption: P(E, | X, E,..;) = P(E;| X)

Agent’s observations depend only on the actual current state of the
world




Stationary Process

* Infinitely many possible values of ¢
Does each timestep need a distribution?

« Assume stationary process:

Changes in the world state are governed by laws that do
not themselves change over time

Transition model P(X,|X, ) and sensor model P(E,| X))
are time-invariant, i.e., they are the same for all t

Complete Joint Distribution

* Given:
Transition model: P(X, X))
Sensor model: P(E, X))
Prior probability: P(X,)

* Then we can specify complete joint distribution
of a sequence of states:

P(Xg X,poos X, By E)) = PCX) [P X DP(E, 1 X))

i=1




Example

R, | PRR.)
T 0.7
F 03

R, | PUIRY
T 09
F 02

This should look like a finite state automaton (since it is one)
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Inference Tasks

Filtering or monitoring: P(X,|e,,...,e,)
Compute the current belief state, given all evidence to date

Prediction: P(X, | ey,...,e)
Compute the probability of a future state

Smoothing: P(X, |e,,...,e)
Compute the probability of a past state (hindsight)

Most likely explanation:
arg max,; ,P(x;,....x/|e,...,e)
Given a sequence of observations, find the sequence of states

that is most likely to have generated those observations
18




Examples

Filtering: What is the probability that it is raining today,
given all of the umbrella observations up through today?

Prediction: What is the probability that it will rain the day
after tomorrow, given all of the umbrella observations up
through today?

Smoothing: What is the probability that it rained yesterday,
given all of the umbrella observations through today?

Most likely explanation: If the umbrella appeared the first
three days but not on the fourth, what is the most likely
weather sequence to produce these umbrella sightings?
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Filtering

Maintain a current state estimate and update it
Rather than looking at all percepts (observed values) in history

So, given result of filtering up to ¢, compute ¢+ from e,,,

We use recursive estimation to compute
P(X.; | €;..+1) as a function of e, ; and P(X, | e;.)

‘We can write this as:

P(Xt+1 I el:t+1) = P(Xt+1 I el:t’et+1)
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Filtering 2

* P(X.; | €441 as a function of e, and P(X, | e,.)

P(X,,le,)=P(X, le,e,)

=aP(,, 1X,.e,)P(X, le.,)
=aP(,, 1X,)PX, le.,)

= aPe,1X,,) D P(X,,1x) P(x,le,)

X

t+1

* This leads to a recursive definition:
fi..s1 = @ FORWARD (£}, €.,1)

Filtering Example

P(Xt+1 Iel:t+1) = aP(et+1 I)(t+l) EP(XtH IXt) P(Xt Iel:t)
X

‘

R, | PRIR.)
T 0.7
F 0.3

Umbrella,,
R

P(UIR)
09
0.2

What is the probability of rain on Day 2, given a uniform prior of rain
on Day 0,U, = true,and U, = true!?
22




Decision Making
Under Uncertainty

Decision Making Under Uncertainty

Many environments have multiple possible
outcomes

Some of these outcomes may be good; others may
be bad

Some may be very likely; others unlikely

What’s a poor agent to do?
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Reasoning Under Uncertainty

* So how do we do reasoning under uncertainty and
with inexact knowledge?
Heuristics
* Mimic heuristic knowledge processing methods used by experts

Empirical associations
* Experiential reasoning
* Based on limited observations

Probabilities
* Objective (frequency counting)
 Subjective (human experience )
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Non-deterministic vs.
Probabilistic Uncertainty

a b C

{a,b,c} {a(pa), b(pb), c(pc)}

- decision that is - decision that maximizes
best for worst case expected utility value

Non-deterministic model Probabilistic model

~ Adversarial search
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Decision Theory

* Combine probability and utility

- Agent that makes rational decisions
On average, lead to desired outcome

* Immediate simplifications:
‘Want most desirable immediate outcome (episodic)
nondeterministic, partially observable world

* Definition: result of an action a leads to outcome s’:
RESULT(a) is a random variable; domain is possible outcomes
P(RESULT(a) = s’ | a, e)

Expected Utility

Goal: find best expected outcome

Random variable X with:
n values xy,...,X,
Distribution (py,...,p,)

X i1s the state reached after doing an action A
under uncertainty

Utility function U(s) is the utility of a state, i.e.,
desirability
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Expected Utility

* X is state reached after doing an action A under
uncertainty

* U(s) is the utility of a state < desirability

* The expected utility of action A, given evidence
EU(a|e), is average utility of outcomes (states in
S), weighted by probability an action occurs:

EU[A] =S, ,pxlAUX)

One State/One Action Example

SO0

U(A1, S0) =100x 0.2 + 50 x 0.7 + 70 x 0.1
=20+35+7
=62
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One State/Two Actions Example

+ U (A1, S0) = 62

U (A2,S0)=74

+ U (S0) = max,{U(a,S0)}
=74

0.7 02 01
70

Introducing Action Costs

- U (A1,S0)=62-5=57

« U (A2, S0) = 74 — 25 = 49

- U (S0) = max,{U(a, S0)}
= 57
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MEU Principle

A rational agent should choose the action that
maximizes agent’s expected utility

This is the basis of the field of decision theory

The MEU principle provides a normative criterion
for rational choice of action

...Al 1s solved!

Not Quitte...

Must have a complete model of:
Actions
Utilities
States

Even if you have a complete model, decision making is
computationally intractable

In fact, a truly rational agent takes into account the utility of
reasoning as well (bounded rationality)

Nevertheless, great progress has been made in this area

‘We are able to solve much more complex decision-theoretic problems
than ever before
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Axioms of Utility Theory

Orderability
(A>B) v (A<B) v (A~B)

Transitivity
* (A>B) A (B>C) = (A>0)

Continuity
© A>B>C=13dp[pA; 1-pC] ~ B

Substitutability
© A~B=[pA; 1-p,C]~[p,B; 1-p,C]

Monotonicity
© A>B = (p>q < [p,A; 1-p,B] >~ [q,A; 1-q,B])

Decomposability
© [p,A; 1-p, [q,B; 1-q, Cl] ~ [p,A; (1-p)g, B; (1-p)(1-g), C]
35

Money Versus Utility

Money <> Utility

* More money is better, but not always in a linear
relationship to the amount of money

Expected Monetary Value
Risk-averse: U(L) < U(Sgpyry)
Risk-seeking: U(L) > U(Sgypyr)
Risk-neutral: U(L) = U(Sgpyry)
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Value Function

Provides a ranking of alternatives, but not a
meaningful metric scale

Also known as an “ordinal utility function”

Sometimes, only relative judgments (value
functions) are necessary

At other times, absolute judgments (utility
functions) are required
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