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Decision Making under 
Uncertainty 

AI Class 10 (Ch. 15.1-15.2.1, 16.1-16.3) 

Cynthia Matuszek – CMSC 671 
Material from Marie desJardin, Lise Getoor, Jean-Claude 

Latombe, Daphne Koller, and Paula Matuszek 1 
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Bookkeeping 

•  HW 3 out  
•  Group work for non-programming parts! 

•  Heavy on CSPs and probability 

•  Forms groups today or in Piazza 

•  Soon: form project teams! 
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Today’s Class 

•  Making Decisions Under Uncertainty 
• Tracking Uncertainty over Time 

• Decision Making under Uncertainty 

•  Project groups, part 1 ß ? 
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Introduction 

•  The world is not a well-defined place. 

•  Sources of  uncertainty 
•  Uncertain inputs: What’s the temperature?  
•  Uncertain (imprecise) definitions: Is Obama a good 

president? 
•  Uncertain (unobserved) states: Where is the pit? 

•  There is uncertainty in inferences 
•  If  I have a blistery,  itchy rash and was gardening all 

weekend I probably have poison ivy 
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Probabilistic reasoning only gives probabilistic results 
(summarizes uncertainty from various sources) 

•  Uncertain inputs 
•  Missing data 

•  Noisy data 

•  Uncertain knowledge 
•  >1 cause à >1 effect 

•  Incomplete knowledge of  
causality 

•  Probabilistic effects 

•  Uncertain outputs 
•  Default reasoning (even 

deduction) is uncertain 

•  Abduction & induction 
inherently uncertain 

•  Incomplete deductive 
inference can be uncertain 

•  Derived result is formally 
correct, but wrong in real 
world 
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Sources of  Uncertainty 

Reasoning Under Uncertainty 

•  People make successful decisions all the time 
anyhow. 
•  How? 

•  More formally: how do we do reasoning under 
uncertainty, with inexact knowledge? 

•  Step one: understanding what we know 
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MODELING 
UNCERTAINTY  

OVER TIME 
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States and Observations 

•  We don’t have a continuous view of  world 
•  People don’t either! 

•  We see things as a series of  snapshots 

•  Observations, associated with time slices 
•  t1, t2, t3, …

•  Each snapshot contains all variables, observed or not 
•  Xt = (unobserved) state variables at time t; observation at t is Et  

•  This is world state at time t 
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environment 
agent 

? 

sensors 

actuators 

t1, t2, t3, … 

Temporal Probabilistic Agent 
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Time and Uncertainty 

•  The world changes 
•  Examples: diabetes management, traffic monitoring 

•  Tasks: track it; predict it 

•  Basic idea:  
•  Copy state and evidence variables for each time step 

•  Model uncertainty in change over time 

•  Incorporate new observations as they arrive 

10 



6 

Time and Uncertainty 

•  Basic idea:  
•  Copy state and evidence variables for each time step 

•  Model uncertainty in change over time 

•  Incorporate new observations as they arrive 

•  Xt = unobservable state variables at time t:  
BloodSugart, StomachContentst 

•  Et = evidence variables at time t:  
MeasuredBloodSugart, PulseRatet, FoodEatent 

•  Assuming discrete time steps 
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States, Slightly More formally   

•  Process of  change is viewed as series of  snapshots 
•  Time slices 
•  Each describing the state of  the world at a particular time 

•  Each time slice is represented by a set of  random 
variables indexed by t: 

1.  the set of  unobservable state variables Xt  

2.  the set of  observable evidence variables Et 

•  The observation at time t is Et = et for some set of  
values et 

•  Xa:b denotes the set of  variables from Xa to Xb 
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Transition and Sensor Models 

•  Transition model 
•  Models how the world changes over time 

•  Specifies a probability distribution  
•  Over state variables at time t 
•  Given values at previous times 

•  Sensor model 
•  Models how evidence gets its values (sensor data) 

•  E.g.: BloodSugart à MeasuredBloodSugart 

P(Xt | X0:t-1) 

How big 
can this get?
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•  Markov Assumption:  
•  Xt depends on some finite (usually fixed) number of  previous Xi’s 

•  First-order Markov process: P(Xt|X0:t-1) = P(Xt|Xt-1) 
•  kth order: depends on previous k time steps 

•  Sensor Markov assumption: P(Et|X0:t, E0:t-1) = P(Et|Xt) 
•  Agent’s observations depend only on the actual current state of  the 

world 

Xt-2

14 

Markov Assumption 
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•  Infinitely many possible values of  t 
•  Does each timestep need a distribution? 

•  Assume stationary process: 
•  Changes in the world state are governed by laws that do 

not themselves change over time 

•  Transition model  P(Xt|Xt-1) and sensor model P(Et|Xt) 
are time-invariant, i.e., they are the same for all t 
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Stationary Process 

•  Given: 
•  Transition model:  P(Xt|Xt-1) 

•  Sensor model:   P(Et|Xt) 

•  Prior probability:  P(X0) 

•  Then we can specify complete joint distribution  
of  a sequence of  states: 
 

P(X0,X1,...,Xt,E1,...,Et ) = P(X0 ) P(Xi | Xi−1)P(Ei | Xi )
i=1

t

∏
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Complete Joint Distribution 
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Umbrellat 

Raint+1 

Umbrellat+1 

Rt-1 P(Rt|Rt-1)

T
F

0.7
0.3

Rt P(Ut | Rt)

T
F

0.9
0.2

This should look like a finite state automaton (since it is one)
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Example 

•  Filtering or monitoring: P(Xt|e1,…,et) 
Compute the current belief  state, given all evidence to date 

•  Prediction: P(Xt+k|e1,…,et)  
Compute the probability of  a future state 

•  Smoothing: P(Xk|e1,…,et)  
Compute the probability of  a past state (hindsight) 

•  Most likely explanation:  
   arg maxx1,..xtP(x1,…,xt|e1,…,et) 
Given a sequence of  observations, find the sequence of  states 
that is most likely to have generated those observations 
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Inference Tasks 
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•  Filtering: What is the probability that it is raining today, 
given all of  the umbrella observations up through today? 

•  Prediction: What is the probability that it will rain the day 
after tomorrow, given all of  the umbrella observations up 
through today? 

•  Smoothing: What is the probability that it rained yesterday, 
given all of  the umbrella observations through today? 

•  Most likely explanation: If  the umbrella appeared the first 
three days but not on the fourth, what is the most likely 
weather sequence to produce these umbrella sightings? 
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Examples 

•  Maintain a current state estimate and update it 
•  Rather than looking at all percepts (observed values) in history 

•  So, given result of  filtering up to t, compute t+1 from et+1 

•  We use recursive estimation to compute 
P(Xt+1 | e1:t+1) as a function of  et+1 and P(Xt | e1:t) 

•  We can write this as: 

P(Xt+1 | e1:t+1) = P(Xt+1 | e1:t,et+1)
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Filtering 
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•  P(Xt+1 | e1:t+1) as a function of  et+1 and P(Xt | e1:t) 

 

 

•  This leads to a recursive definition: 
 f1:t+1 = α FORWARD (f1:t, et+1) 

 

P(Xt+1 | e1:t+1) = P(Xt+1 | e1:t,et+1)
=α P(et+1 | Xt+1,e1:t ) P(Xt+1 | e1:t )
=α P(et+1 | Xt+1) P(Xt+1 | e1:t )

=α P(et+1 | Xt+1) P(Xt+1 | xt ) P(xt | e1:t )
xt

∑
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Filtering 2 

Raint-1 

Umbrellat-1 

Raint 

Umbrellat 

Raint+1 

Umbrellat+1 

Rt-1 P(Rt|Rt-1)

T
F

0.7
0.3

Rt P(Ut|Rt)

T
F

0.9
0.2

What is the  probability of rain on Day 2, given a uniform prior of rain 
on Day 0, U1 = true, and U2 = true?

€ 

P(Xt+1 | e1:t+1) = α P(et+1 | Xt+1) P(Xt+1 | Xt ) P(Xt | e1:t )
X t

∑
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Filtering Example 
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Decision Making  
Under Uncertainty  

Decision Making Under Uncertainty 

•  Many environments have multiple possible 
outcomes 

•  Some of  these outcomes may be good; others may 
be bad 

•  Some may be very likely; others unlikely 

•  What’s a poor agent to do? 

24 



13 

Reasoning Under Uncertainty 

•  So how do we do reasoning under uncertainty and 
with inexact knowledge? 

•  Heuristics 
•  Mimic heuristic knowledge processing methods used by experts 

•  Empirical associations 
•  Experiential reasoning 

•  Based on limited observations 

•  Probabilities 
•  Objective (frequency counting) 

•  Subjective (human experience ) 
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? 

b a c 

{a,b,c} 

à  decision that is 
    best for worst case 

? 

b a c 

{a(pa), b(pb), c(pc)} 

à  decision that maximizes 
    expected utility value 

Non-deterministic model Probabilistic model 

~ Adversarial search 
26 

Non-deterministic vs.  
Probabilistic Uncertainty 
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Decision Theory 

•  Combine probability and utility 

à Agent that makes rational decisions 
•  On average, lead to desired outcome 

•  Immediate simplifications: 
•  Want most desirable immediate outcome (episodic) 

•  nondeterministic, partially observable world 

•  Definition: result of  an action a leads to outcome s’: 
•  RESULT(a) is a random variable; domain is possible outcomes 

•  P(RESULT(a) = s’ | a, e)
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Expected Utility 

•  Goal: find best expected outcome 

•  Random variable X with: 
•  n values x1,…,xn 

•  Distribution (p1,…,pn) 

•  X is the state reached after doing an action A 
under uncertainty 

•  Utility function U(s) is the utility of  a state, i.e., 
desirability 

28 
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Expected Utility 

•  X is state reached after doing an action A under 
uncertainty 

•  U(s) is the utility of  a state ß desirability 

•  The expected utility of  action A, given evidence 
EU(a|e), is average utility of  outcomes (states in 
S), weighted by probability an action occurs: 

               EU[A] = Si=1,…,n p(xi|A)U(xi)

29 

s0 

s3 s2 s1 

A1 

0.2 0.7 0.1 
100 50 70 

U(A1, S0) = 100 x 0.2 + 50 x 0.7 + 70 x 0.1 
           = 20 + 35 + 7 
           = 62 

One State/One Action Example 

30 
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s0 

s3 s2 s1 

A1 

0.2 0.7 0.1 
100 50 70 

A2 

s4 
0.2 0.8 

80 

•  U (A1, S0) = 62 
•  U (A2, S0) = 74 
•  U (S0) = maxa{U(a,S0)}  
             = 74 

One State/Two Actions Example 
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s0 

s3 s2 s1 

A1 

0.2 0.7 0.1 
100 50 70 

A2 

s4 
0.2 0.8 

80 

•  U (A1, S0) = 62 – 5 = 57 
•  U (A2, S0) = 74 – 25 = 49 
•  U (S0) = maxa{U(a, S0)}  
             = 57 

-5 -25 

Introducing Action Costs 
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MEU Principle 

•  A rational agent should choose the action that 
maximizes agent’s expected utility 

•  This is the basis of  the field of  decision theory 

•  The MEU principle provides a normative criterion 
for rational choice of  action  

•  …AI is solved! 
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Not Quite… 

•  Must have a complete model of: 
•  Actions 
•  Utilities 
•  States 

•  Even if  you have a complete model, decision making is 
computationally intractable 

•  In fact, a truly rational agent takes into account the utility of  
reasoning as well (bounded rationality) 

•  Nevertheless, great progress has been made in this area 
•  We are able to solve much more complex decision-theoretic problems 

than ever before 
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Axioms of  Utility Theory 

•  Orderability 
(A>B) ∨ (A<B) ∨ (A~B) 

•  Transitivity  
•  (A>B) ∧ (B>C) ⇒ (A>C) 

•  Continuity 
•  A>B>C ⇒ ∃p [p,A; 1-p,C] ~ B 

•  Substitutability 
•  A~B ⇒ [p,A; 1-p,C]~[p,B; 1-p,C] 

•  Monotonicity 
•  A>B ⇒ (p≥q ⇔ [p,A; 1-p,B] >~ [q,A; 1-q,B]) 

•  Decomposability 
•  [p,A; 1-p, [q,B; 1-q, C]] ~ [p,A; (1-p)q, B; (1-p)(1-q), C] 
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Money Versus Utility 

•  Money <> Utility 
•  More money is better, but not always in a linear 

relationship to the amount of  money 

•  Expected Monetary Value 

•  Risk-averse: U(L) < U(SEMV(L)) 

•  Risk-seeking: U(L) > U(SEMV(L)) 

•  Risk-neutral: U(L) = U(SEMV(L)) 
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Value Function 

•  Provides a ranking of  alternatives, but not a 
meaningful metric scale 

•  Also known as an “ordinal utility function” 

•  Sometimes, only relative judgments (value 
functions) are necessary 

•  At other times, absolute judgments (utility 
functions) are required 
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