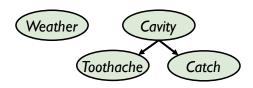


AI Class 10 (Ch. 14.1-14.4.2; skim 14.3)



Based on slides by Dr. Marie deslardin. Some material also adapted from slides by Matt E.
Taylor (@ WSU, Lise Getoor (@ UCSC, and Dr. P. Matuszek (@ Villanova University,
which are based in part on www.csc.calpoly.edu/~fkurfess/Courses/CSC-481/W02/
Slides/Uncertainty.ppt-and-www.cs.umbc.edu/courses/graduate/671/fall05/slides/

Cynthia Matuszek – CMSC 671

Bookkeeping

- HW 3 out @ 11:59pm
- Questions about HW 2

2.

Today's Class

- Bayesian networks
 - Network structure
 - Conditional probability tables
 - Conditional independence
- Inference in Bayesian networks
 - Exact inference
 - Approximate inference

3

Review: Independence

What does it mean for A and B to be **independent**?

- $P(A) \perp P(B)$
- A and B do not affect each other's probability
- $P(A \wedge B) = P(A) P(B)$

Review: Conditioning

What does it mean for A and B to be **conditionally independent given C?**

- A and B don't affect each other if C is known
- $P(A \land B \mid C) = P(A \mid C) P(B \mid C)$

6

Review: Bayes' Rule

What is **Bayes' Rule**?

$$P(H_i \mid E_j) = \frac{P(E_j \mid H_i)P(H_i)}{P(E_j)}$$

What's it useful for?

• Diagnosis: effect is perceived, want to know cause

$$P(cause \mid effect) = \frac{P(effect \mid cause)P(cause)}{P(effect)}$$

8

R&N, 495–496

Review: Joint Probability

What is the **joint probability** of A and B?

- *P*(A,B)
- The probability of any pair of legal assignments.
 - Generalizing to > 2, of course
- Booleans: expressed as a matrix/table

	alarm	¬alarm
burglary	0.09	0.01
¬burglary	0.1	0.8

A	В	
Т	T	0.09
Т	F	0.1
F	T	0.01
F	F	0.8

• Continuous domains: probability functions

9

Bayes' Nets: Big Picture

- Problems with full joint distribution tables as our probabilistic models:
 - Joint gets way too big to represent explicitly
 - Unless there are only a few variables
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
 - Why?

	A		¬A		
	E	¬E	E	¬E	
В	0.01	0.08	0.001	0.009	
¬В	0.01	0.09	0.01	0.79	

10

Slides derived from Matt E. Taylor, WSU

Bayes' Nets: Big Picture

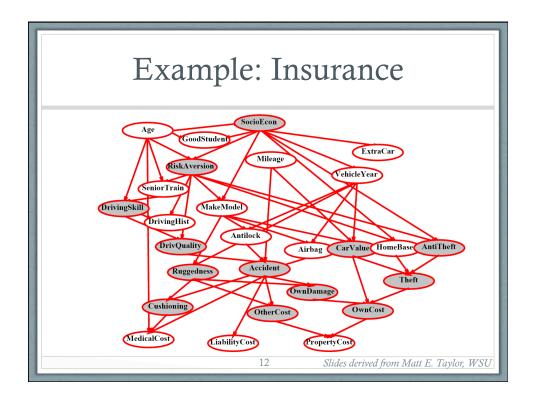
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - A type of graphical models
- We describe how variables interact locally
 - Local interactions chain together to give global, indirect interactions

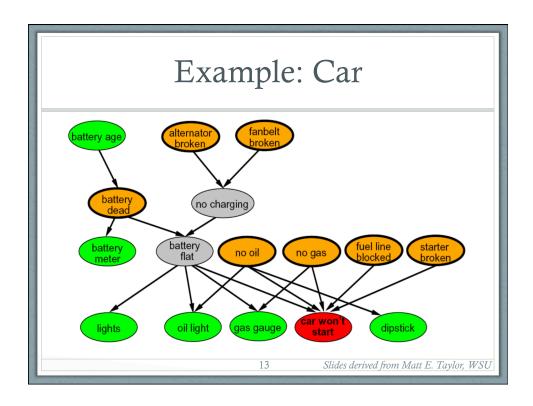
Weather

Toothache Catch

Slides derived from Matt E. Taylor, WSU

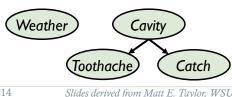
Cavity





Graphical Model Notation

- Nodes: variables (with domains)
- Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
 - Indicate "direct influence" between
 - Formally: encode conditional independence
- For now: imagine that arrows mean causation
 - (in general, they don't!)



Slides derived from Matt E. Taylor, WSU

Bayesian Belief Networks (BNs)

- Let's formalize the semantics of a BN
 - A set of nodes, one per variable *X*
 - An arc between each con-influential node
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over *X*
 - One for each combination of parents' values

$$P(X \mid A_1 \dots A_n)$$

- CPT: conditional probability table
 - Description of a noisy "causal" process

15

Slides derived from Matt E. Taylor, WSU

 $P(X|A_1\ldots A_n)$

Bayesian Belief Networks (BNs)

- Definition: **BN** = (**DAG**, **CPD**)
 - **DAG**: directed acyclic graph (BN's **structure**)
 - **Nodes**: random variables
 - Typically binary or discrete
 - Methods exist for continuous variables
 - Arcs: indicate probabilistic dependencies between nodes
 - Lack of link signifies conditional independence
 - **CPD**: conditional probability distribution (BN's parameters)
 - Conditional probabilities at each node, usually stored as a table (conditional probability table, or CPT)

Bayesian Belief Networks (BNs)

- Definition: **BN** = (**DAG**, **CPD**)
 - **DAG**: directed acyclic graph (BN's **structure**)
 - **CPD**: conditional probability distribution (BN's parameters)
 - Conditional probabilities at each node, usually stored as a table (conditional probability table, or **CPT**)

 $P(x_i \mid \pi_i)$ where π_i is the set of all parent nodes of x_i

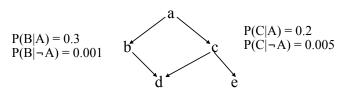
- Root nodes are a special case
 - No parents, so use priors in CPD:

$$\pi_i = \emptyset$$
, so $P(x_i \mid \pi_i) = P(x_i)$

17

Example BN

P(A) = 0.001



P(D|B,C) = 0.1 $P(D|B,\neg C) = 0.01$

 $P(D|\neg B,C) = 0.01$ $P(D|\neg B,\neg C) = 0.00001$ P(E|C) = 0.4

 $P(E|\neg C) = 0.002$

We only specify P(A) etc., not $P(\neg A)$, since they have to sum to one

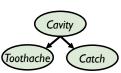
Probabilities in BNs

- Bayes' nets implicitly **encode joint distributions** as a **product of local conditional distributions**.
- To see probability of a **full assignment**, multiply all the relevant conditionals together:

$$P(x_1, x_2, ...x_n) = \prod_{i=1}^{n} P(x_i \mid parents(X_i))$$

• Example:

 $P(+cavity, +catch, \neg toothache) = ?$



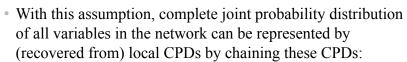
q

• This lets us reconstruct any entry of the full joint

Slides derived from Matt E. Taylor, WSU

Conditional Independence and Chaining

- Conditional independence assumption: $P(x_i | \pi_i, q) = P(x_i | \pi_i)$
 - q is any set of variables (nodes) other than x_i and its successors
 - π_i blocks influence of other nodes on x_i and its successors
 - That is, q influences x_i only through variables in π_i)



$$P(x_1,...,x_n) = \prod_{i=1}^n P(x_i \mid \pi_i)$$

The Chain Rule

$$P(x_1,...,x_n) = \prod_{i=1}^n P(x_i \mid \pi_i)$$

e.g, $P(x_1,...,x_n) = P(x_1)P(x_2 \mid x_1)P(x_3 \mid x_1,x_2)...$

Decomposition:

P(Traffic, Rain, Umbrella) = P(Rain) P(Traffic | Rain) P(Umbrella | Rain, Traffic)

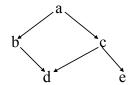
With assumption of conditional independence:

P(Traffic, Rain, Umbrella) = P(Rain) P(Traffic | Rain) P(Umbrella | Rain)

Bayes' nets express conditional independence assumptions

Slides derived from Matt E. Taylor, WSU

Chaining: Example



Computing the joint probability for all variables is easy:

P(a, b, c, d, e)

 $= P(e \mid a, b, c, d) P(a, b, c, d)$

by the product rule by cond. indep. assumption

 $= P(e \mid c) P(a, b, c, d)$

 $= P(e \mid c) P(d \mid a, b, c) P(a, b, c)$

 $= P(e \mid c) P(d \mid b, c) P(c \mid a, b) P(a, b)$

 $= P(e \mid c) P(d \mid b, c) P(c \mid a) P(b \mid a) P(a)$

Topological Semantics

- A node is conditionally independent of its nondescendants given its parents
- A node is conditionally independent of all other nodes in the network given its parents, children, and children's parents (also known as its Markov blanket)
- The method called **d-separation** can be applied to decide whether a set of nodes X is independent of another set Y, given a third set Z

23

Independence and Causal Chains

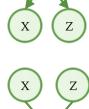
- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
- Question: are X and Z necessarily independent?
 - No. (E.g., low pressure causes rain, which causes traffic)
 - X can influence Z, Z can influence X (via Y)
- This configuration is a "causal chain"

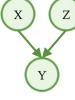
24

Slides derived from Matt E. Taylor, WSU

Two More Main Patterns

- Common Cause:
 - Y cause X and Y causes Z
 - Are X and Z independent?
 - Are X and Z independent given Y?
- Common Effect:
 - Two causes of one effect
 - Are X and Z independent? (yes)
 - Are X and Z independent given Y?
 - \rightarrow No!
 - Observing an effect "activates" influence between possible causes.





2.5

Slides derived from Matt E. Taylor, WSU

Inference in Bayesian Networks

Chapter 14.4.1-14.4.2

2.7

Some material borrowed from Lise Getoor

Inference Tasks

- Simple queries: Compute posterior marginal $P(X_i \mid E=e)$
 - E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false)
- Conjunctive queries:
 - $P(X_i, X_i \mid E=e) = P(X_i \mid e=e) P(X_i \mid X_i, E=e)$
- Optimal decisions:
 - Decision networks include utility information
 - Probabilistic inference gives P(outcome | action, evidence)
- Value of information: Which evidence should we seek next?
- Sensitivity analysis: Which probability values are most critical?
- **Explanation:** Why do I need a new starter motor?

28

Approaches to Inference

- Exact inference
 - Enumeration
 - Belief propagation in polytrees
 - Variable elimination
 - Clustering / join tree algorithms
- Approximate inference
 - Stochastic simulation / sampling methods
 - Markov chain Monte Carlo methods
 - Genetic algorithms
 - Neural networks
 - Simulated annealing
 - Mean field theory

Direct Inference with BNs

- Instead of computing the joint, suppose we just want the probability for *one* variable
- Exact methods of computation:
 - Enumeration
 - Variable elimination
 - Join trees: get the probabilities associated with every query variable

30

Inference by Enumeration

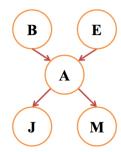
- Add all of the terms (atomic event probabilities) from the full joint distribution
- If **E** are the evidence (observed) variables and **Y** are the other (unobserved) variables, then:

$$P(X \mid \mathbf{e}) = \alpha P(X, \mathbf{E}) = \alpha \sum P(X, \mathbf{E}, \mathbf{Y})$$

- Each P(X, **E**, **Y**) term can be computed using the chain rule
- Computationally expensive!

Example 1: Enumeration

- Recipe:
 - State the marginal probabilities you need
 - Figure out ALL the atomic probabilities you need
 - Calculate and combine them
- Example:
 - $P(+b \mid +j, +m) = \frac{P(+b, +j, +m)}{P(+j, +m)}$



32 Slides derived from Matt E. Taylor, WSU; Russell&Norvig

Example 1 cont'd

$$P(+b,+j,+m) =$$

$$P(+b)P(+e)P(+a|+b,+e)P(+j|+a)P(+m|+a)+$$

$$P(+b)P(+e)P(-a|+b,+e)P(+j|-a)P(+m|-a)+$$

$$P(+b)P(-e)P(+a|+b,-e)P(+j|+a)P(+m|+a)+$$

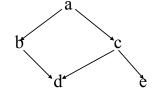
$$P(+b)P(-e)P(-a|+b,-e)P(+j|-a)P(+m|-a)$$

P(+m | +b, +e)?

33 Slides derived from Matt E. Taylor, WSU; Russell&Norvig

Example 2: Enumeration

- $P(\mathbf{x}_i) = \sum_{\pi i} P(\mathbf{x}_i \mid \pi_i) P(\pi_i)$
- Suppose we want *P*(D=true),



- only E is given as true
- $P(d \mid e) = \alpha \Sigma_{ABC} P(a, b, c, d, e)$ (where $\alpha = 1/P(e)$) = $\alpha \Sigma_{ABC} P(a) P(b \mid a) P(c \mid a) P(d \mid b, c) P(e \mid c)$
- With simple iteration, that's a lot of repetition!
 - P(e|c) has to be recomputed every time we iterate over C=true

34

Variable Elimination

- Basically just enumeration, but with caching of local calculations
- Linear for polytrees (singly connected BNs)
- Potentially exponential for multiply connected BNs **Exact inference in Bayesian networks is NP-hard!**
- Join tree algorithms are an extension of variable elimination methods that compute posterior probabilities for **all** nodes in a BN simultaneously

Variable Elimination Approach

General idea:

• Write query in the form

$$P(X_n, e) = \sum_{x_k} \cdots \sum_{x_3} \sum_{x_2} \prod_i P(x_i \mid pa_i)$$

- Note that there is no α term here
- It's a conjunctive probability, not a conditional probability...
- Iteratively
 - Move all irrelevant terms outside of innermost sum
 - Perform innermost sum, getting a new term
 - Insert the new term into the product

36

Variable Elimination: Example

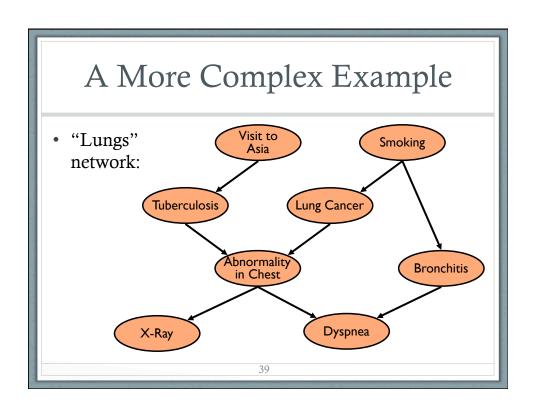
$$P(w) = \sum_{r,s,c} P(w \mid r,s) P(r \mid c) P(s \mid c) P(c)$$

$$= \sum_{r,s} P(w \mid r,s) \sum_{c} P(r \mid c) P(s \mid c) P(c)$$

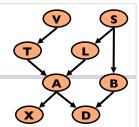
$$= \sum_{r,s} P(w \mid r,s) f_1(r,s)$$

$$= \sum_{r,s} P(w \mid r,s) f_1(r,s)$$
Cloudy
Sprinkler
Rain
WetGrass

Computing Factors							
R	S	С	P(R C)	P	(S C)	P(C)	P(R C) P(S C) P(C)
T	T	T					
Т	T	F					
Т	F	T					
Т	F	F					
F	T	T					
F	T	F					
F	F	T					
F	F	F					
			R	S	f ₁ (R	$P(S C) = \sum_{c} P(R S) P(S C) P(C)$	
				T	Т		
				T	F		
				F	Т		
				F	F		



Lungs 1



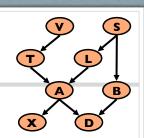
- We want to compute *P*(*d*)
- Need to eliminate: *v,s,x,t,l,a,b*

Initial factors:

P(v)P(s)P(t|v)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)

40

Lungs 2



- We want to compute *P*(*d*)
- Need to eliminate: *v,s,x,t,l,a,b*

Initial factors:

$$P(v)P(s)P(t \mid v)P(l \mid s)P(b \mid s)P(a \mid t, l)P(x \mid a)P(d \mid a, b)$$

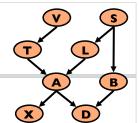
Eliminate: v

Compute:
$$f_v(t) = \sum_{v} P(v)P(t \mid v)$$

$$\Rightarrow f_v(t)P(s)P(l \mid s)P(b \mid s)P(a \mid t, l)P(x \mid a)P(d \mid a, b)$$

- Note: $f_v(t) = P(t)$
- In general, result of elimination is not necessarily a probability term

Lungs 3



- We want to compute *P*(*d*)
- Need to eliminate: *s,x,t,l,a,b*

Initial factors:

$$P(v)P(s)P(t|v)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)$$

$$\Rightarrow f_v(t)\underline{P(s)}\underline{P(l|s)}P(b|s)P(a|t,l)P(x|a)P(d|a,b)$$

Eliminate: s

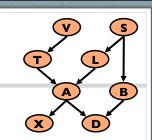
Compute:
$$f_s(b,l) = \sum_s P(s)P(b \mid s)P(l \mid s)$$

 $\Rightarrow f_v(t)f_s(b,l)P(a \mid t,l)P(x \mid a)P(d \mid a,b)$

- Summing on s results in a factor with two arguments $f_s(b,l)$
- In general, result of elimination may be a function of several variables

42

Lungs 4



- We want to compute *P*(*d*)
- Need to eliminate: *x*,*t*,*l*,*a*,*b*

Initial factors

$$\begin{split} P(v)P(s)P(t\,|\,v)P(l\,|\,s)P(b\,|\,s)P(a\,|\,t,l)P(x\,|\,a)P(d\,|\,a,b) \\ \Rightarrow f_v(t)P(s)P(l\,|\,s)P(b\,|\,s)P(a\,|\,t,l)P(x\,|\,a)P(d\,|\,a,b) \end{split}$$

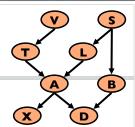
Eliminate: $x \Rightarrow f_v(t)f_s(b,l)P(a \mid t,l)\underline{P(x \mid a)}P(d \mid a,b)$

Compute:
$$f_x(a) = \sum_x P(x \mid a)$$

$$\Rightarrow f_v(t) f_s(b, l) \underline{f_x(a)} P(a \mid t, l) P(d \mid a, b)$$

Note: $f_x(a) = 1$ for all values of a!!

Lungs 5



- We want to compute *P*(*d*)
- Need to eliminate: *t*,*l*,*a*,*b*

Initial factors P(v)P(s)P(t|v)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)

$$\Rightarrow f_{v}(t)P(s)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)$$

 $\Rightarrow f_v(t)f_s(b,l)P(a|t,l)P(x|a)P(d|a,b)$

$$\Rightarrow f_v(t)f_s(b,l)f_x(a)P(a|t,l)P(d|a,b)$$

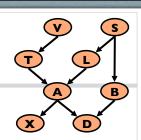
Eliminate: t

Compute: $f_t(a,l) = \sum_{i} f_v(t) P(a \mid t, l)$

$$\Rightarrow f_s(b,l)f_x(a)f_t(a,l)P(d \mid a,b)$$

44

Lungs 6



- We want to compute *P*(*d*)
- Need to eliminate: *l,a,b*

Initial factors $P(v)P(s)P(t \mid v)P(l \mid s)P(b \mid s)P(a \mid t, l)P(x \mid a)P(d \mid a, b)$

$$\Rightarrow f_{v}(t)P(s)P(l\mid s)P(b\mid s)P(a\mid t,l)P(x\mid a)P(d\mid a,b)$$

 $\Rightarrow f_{v}(t)f_{s}(b,l)P(a\mid t,l)P(x\mid a)P(d\mid a,b)$

 $\Rightarrow f_{v}(t)f_{s}(b,l)f_{s}(a)P(a|t,l)P(d|a,b)$

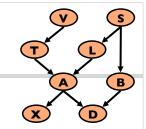
$$\Rightarrow f_s(b,l)f_x(a)f_t(a,l)P(d\mid a,b)$$

Eliminate: *l*

Compute: $f_l(a,b) = \sum f_s(b,l) f_t(a,l)$

 $\Rightarrow f_l(a,b)^l f_x(a) P(d \mid a,b)$

Lungs Finale



- We want to compute *P*(*d*)
- Need to eliminate: *b*

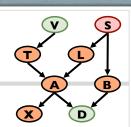
Initial factors $P(v)P(s)P(t \mid v)P(t \mid s)P(b \mid s)P(a \mid t, l)P(x \mid a)P(d \mid a, b)$ $\Rightarrow f_v(t)P(s)P(t \mid s)P(b \mid s)P(a \mid t, l)P(x \mid a)P(d \mid a, b)$ $\Rightarrow f_v(t)f_s(b, l)P(a \mid t, l)P(x \mid a)P(d \mid a, b)$ $\Rightarrow f_v(t)f_s(b, l)f_x(a)P(a \mid t, l)P(d \mid a, b)$ $\Rightarrow f_s(b, l)f_x(a)f_t(a, l)P(d \mid a, b)$ $\Rightarrow f_t(a, b)f_x(a)P(d \mid a, b) \Rightarrow f_a(b, d) \Rightarrow f_b(d)$

Eliminate: *a*,*b*

Compute: $f_a(b,d) = \sum_{a} f_l(a,b) f_x(a) p(d \mid a,b)$ $f_b(d) = \sum_{b} f_a(b,d)$

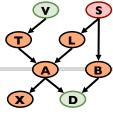
46

Dealing with Evidence



- How do we deal with evidence?
 - And what is "evidence?"
 - · Variables whose value has been observed
- Suppose we are given evidence: V = t, S = f, D = t
- We want to compute P(L, V = t, S = f, D = t)

Dealing with Evidence



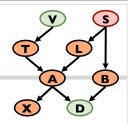
• We start by writing the factors:

P(v)P(s)P(t|v)P(l|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)

- Since we know that V = t, we don't need to eliminate V
- Instead, we can replace the factors P(V) and P(T|V) with $f_{P(V)} = P(V = t)$ $f_{p(T|V)}(T) = P(T \mid V = t)$
- These "select" appropriate parts of original factors given evidence
- Note that $f_{P(V)}$ is a constant, so **does not appear** in elimination of other variables

18

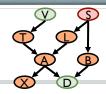
Dealing with Evidence



- So now...
 - Given evidence V = t, S = f, D = t
 - Compute P(L, V = t, S = f, D = t)
 - Initial factors, after setting evidence:

 $f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(l)f_{P(b|s)}(b)P(a|t,l)P(x|a)f_{P(d|a,b)}(a,b)$

Dealing with Evidence



- Given evidence V = t, S = f, D = t, we want to compute P(L, V = t, S = f, D = t)
- Initial factors, after setting evidence:

$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(l)f_{P(b|s)}(b)P(a \mid t,l)\underline{P(x \mid a)}f_{P(d|a,b)}(a,b)$$

Eliminating
$$x$$
, we get
$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(t)f_{P(b|s)}(b)P(a|t,l)f_{x}(a)f_{P(d|a,b)}(a,b)$$
 Eliminating t , we get
$$f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(l)f_{P(b|s)}(b)P(a|t,l)f_{x}(a)f_{P(d|a,b)}(a,b)$$
 Eliminating t , we get

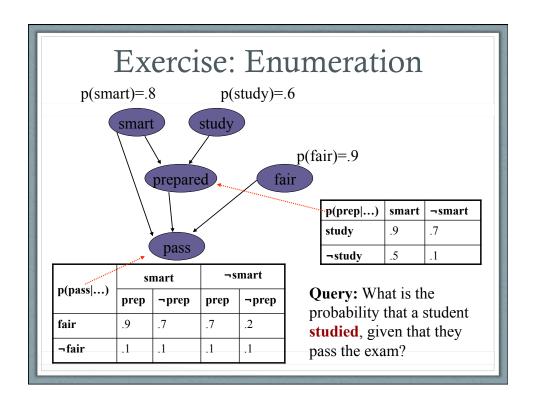
Eliminating
$$t$$
, we get
$$f_{P(v)}f_{P(s)}f_{P(lls)}(l)f_{P(bls)}(b)\underline{f_t(a,l)}f_x(a)f_{P(dla,b)}(a,b)$$
 Eliminating a , we get

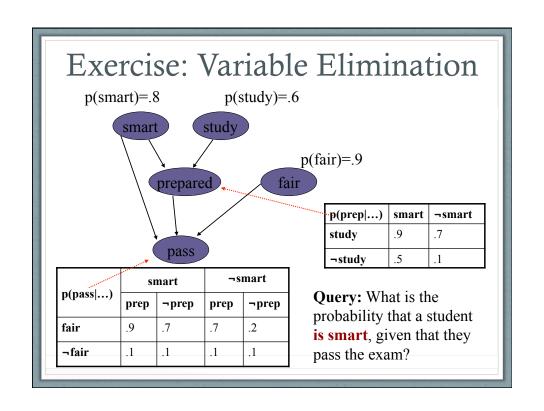
$$f_{P(v)}f_{P(s)}f_{P(l|s)}(l)\underline{f_{P(b|s)}}(b)f_a(b,\overline{l})$$

$$f_{P(v)}f_{P(s)}f_{P(lls)}(l)f_b(l)$$

Variable Elimination Algorithm

- Let $X_1, ..., X_m$ be an ordering on the non-query variables
- For i = m, ..., 1 $\sum_{X_1} \sum_{X_2} ... \sum_{X_m} \prod_{i} P(X_i | Parents(X_i))$
 - In the summation for X_i , leave only factors mentioning X_i
 - Multiply the factors, getting a factor that contains a number for each value of the variables mentioned, including X_i
 - Sum out X_i, getting a factor f that contains a number for each value of the variables mentioned, not including X_i
 - Replace the multiplied factor in the summation





Summary

- Bayes nets
 - Structure
 - Parameters
 - Conditional independence
 - Chaining
- BN inference
 - Enumeration
 - Variable elimination
 - Sampling methods