
CMSC 671 (Introduction to AI) – Fall 2016 
Homework	2:	Jumping	Frogs	and	Ricocheting	Robots	(70	points)	
Due:	10/3	at	11:59pm.	
Turnin:	Blackboard.	

Please	submit	Parts	I	and	III	together	as	a	single	PDF	file	named	yourlastname_hw2.pdf,	with	Parts	
I	and	III	clearly	marked	and	delineated.	

Please	submit	Part	 II	as	 two	 files:	a	 .py	 file,	named	yourlastname_hw2.py,	and	a	 file	based	on	our	
GUI	code	named	yourlastname_ricochet.pyde.	

All	files	must	start	with	your	last	name	and	have	your	full	name	in	the	file,	at/near	the	top.		

PART	I.		JUMPING	FROGS	(SEARCH	SPACES	AND	STATES)	(20	PTS)	

We	are	going	to	formulate	the	“jumping	frog”	puzzle	as	a	search	problem.	(There	are	a	number	of	
flash	implementations	online,	if	you	want	to	play	with	it.1)	In	general,	two	sets	of	frogs	are	trying	to	
get	to	the	opposite	ends	of	a	single	row	of	lily	pads.	Each	frog	can	jump	forward	either	one	or	two	
spaces,	but	cannot	jump	onto	an	occupied	pad.	Frogs	cannot	jump	backwards	or	turn	around.		

We	are	going	to	discuss	a	very	simple	jumping	frog	puzzle,	in	which	we	have	two	frogs	(green	and	
brown),	separated	by	two	empty	lily	pads.	Here	are	some	possible	states:2	

Start	(S):	 	 Goal	(G):	 	

Legal	state:	 	 Legal	state:	 	

Legal	state:	 	 Illegal:	 	

Assignment:	Answer	the	following	questions	about	searching	the	space	of	this	puzzle.		
1. How	many	unique,	legal,	reachable	states	are	there	in	this	search	space?		

(It	can	help	to	draw	them	out,	e.g.,		[G		_		_		B]	à	[	_		G		_		B]	…)	
2. What	are	four	operations	that	fully	encode	this	search	problem?	

(a) Operation	1:		
(b) Operation	2:		
(c) Operation	3:		
(d) Operation	4:		

3. Are	there	any	loops	in	this	search	space?	
4. Given	the	order	of	operations	above	(e.g.,	the	search	space	is	expanded	in	a-b-c-d	order),	

how	many	states	are	visited	in	a	depth-first	search?	
5. If	you	were	using	heuristic	search,	what	heuristic	would	you	use	for	evaluating	states?	
6. Of	the	uninformed,	informed,	and	local	search	methods	we	have	looked	at:	

(a) What	algorithm	would	you	choose	for	jumping	frog	problems	in	general?	
(b) Why	is	this	algorithm	a	good	choice?	(3–4	sentences)	

																																								 																					
1	Such	as:	http://britton.disted.camosun.bc.ca/frog_puzzle.htm.		
2	Frog	graphics	and	some	notes	from	http://britton.disted.camosun.bc.ca/frog_puzzle_sol.htm.	



PART	II.	RICOCHET	ROBOTS3	(40	PTS.)	

The General Idea 

This	 is	a	puzzle	program,	based	very	 loosely	on	 the	game	Ricochet	Robot.	The	 idea	 is	 to	get	your	
piece	(representing	a	robot)	to	a	particular	space	on	the	game	board	in	as	few	moves	as	possible.		

• The	puzzle	consists	of:	
o A	board	with	blocks	(obstacles)	on	it;	
o A	goal	(target)	location,	and;	
o A	starting	location	for	the	robot.		

• The	rules:	
o The	robot	can	move	in	any	of	four	directions—left,	right,	up,	or	down.		
o When	the	robot	moves,	it	must	continue	to	move	in	a	straight	line	until	it	is	stopped	

by	a	block	or	by	the	edge	of	the	playing	board,	or	it	reaches	the	goal.	
o The	goal	is	to	get	the	robot	to	the	target	location	via	the	shortest	path	possible.	

	 	

Here’s	a	problem	with		
a	four-move	solution.	

Here’s	a	problem	with	a	five-move		
solution	(but	you	can	do	better).	

The Search Space 

• The	states	are	the	possible	configurations	of	the	playing	board.	
o Since	the	board	is	fixed	for	any	given	puzzle,	and	only	the	robot	moves,	the	state	is	most	
easily	represented	by	the	robot’s	row,	column	coordinates.	

• The	operators	cause	a	transition	from	one	state	to	another.		
o For	this,	they	are	left,	right,	up,	and	down.	
o No	more	is	needed	since	the	robot	has	no	choice	where	it	stops!	

• The	goal	state	is	one	in	which	the	robot’s	position	is	the	same	as	the	target	position.		
• A	solution	consists	of	a	sequence	of	states	describing	a	path	from	the	start	state	to	the	goal	
state.	

Since	 you	 want	 the	 shortest	 (fewest	 squares	 traversed!)	 solution,	 you	 will	 want	 to	 choose	 an	
algorithm	that	guarantees	optimality.	Since	this	is	a	graph	search	rather	than	a	tree	search,	keep	
track	of	states	you	have	already	visited	to	avoid	getting	stuck	in	a	loop.	

The GUI 

We	are	providing	a	GUI	for	Ricochet	Robots;	if	you	choose	not	to	use	it,	it	is	your	responsibility	
to	present	the	results	of	your	program	in	a	way	that	can	readily	be	graded.	You	will	need	to	install	
Processing	 2.2.1,	 a	 lightweight	 IDE	 for	 Python	 development.	 You	 can	 download	 and	 install	
Processing	(2.2.1!)	from processing.org.		

																																								 																					
3	Patterned	after	materials	by	Dr.	David	Matuszek	at	University	of	Pennsylvania,	with	thanks.	



Processing	adds	a	couple	of	hundred	methods,	two	of	which	are	setup()	and	draw().	The	former	is	
where	the	program	starts,	the	latter	is	then	called	60	times	a	second.	Once	installed,	you	can	run	the	
GUI	by	opening	it	and	clicking	the	triangle	in	the	top	left.	(The	square	stops	the	program.)	

In	ricochet.pyde,	you	will	find	a	block	where	you	should	make	changes,	including	a	file	from	which	
to	read	in	a	puzzle	from	a	file	(this	is	what	we	will	use	to	test	your	program).	A	sample	test	file	is	
included.	Please	don’t	change	the	rest	of	ricochet.pyde.	

Materials	can	be	downloaded	from:		
www.csee.umbc.edu/courses/graduate/671/fall16/Homework/hw2-ricochet.zip	

Assignment:	Implement	the	search	described	above.	

PART	III.		PROGRAMMING	CHOICES	(10	PTS)	

Assignment:	Answer	the	following	questions	(1-4	sentences	per	question).	
1. What	search	algorithm	did	you	implement	in	Part	II?	

2. Why	did	you	choose	that	algorithm?	What	advantages	does	it	have	for	this	problem?	What	
disadvantages?	

3. How	fast	does	your	program	run	on	a	50x50	map	with	10	blocks?	Why?	

4. If	you	had	to	use	a	heuristic	search	algorithm	for	Ricochet	Robots,	what	would	you	use?	Why?		

5. What	would	you	do	differently	if	you	started	over?	


