
CMSC 671

Fall 2010

Tue 11/30/10

Reinforcement Learning
Chapter 21

Prof. Laura Zavala, laura.zavala@umbc.edu, ITE 373, 410-455-8775

Based on the lecture slides for textbook Machine

Learning by Tom M. Mitchell

2

The Reinforcement Learning

Problem

�How an autonomous agent that senses and

acts in its environment can learn to

choose optimal actions to achieve its

goals?

Crawl before you can walk

� Perhaps our programming isn’t for crawling at

all, but for the desire for movement!

From R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Reinforcement Learning

Hypothesis

� Intelligent behavior arises from the actions of

an individual seeking to maximize its received

reward signals in a complex and changing

world.

� Research program:

� identify where reward signals come from,

� develop algorithms that search the space of

behaviors to maximize reward signals.

5

The Agent Learns a Policy

� What is learnt?

� It learns a control strategy, or policy, for

choosing actions that achieve its goals

� What’s the goal?

� Roughly, the agent’s goal is to get as much

reward as it can over the long run.

� Reinforcement learning methods specify how the

agent changes its policy as a result of experience

AS →:π

6

The Agent-Environment Interface

),(:statenext resulting and

),(:reward resulting gets

)(: stepat action chooses

 : stepat state observesAgent

,2,1,0 :steps timediscreteat interact t environmen andAgent

1

1

ttt

ttt

tt

t

ass

asrr

sAat

Sst

t

δ=

=

∈

∈

=

+

+

K

From R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

t

. . .
s
t a

r
t +1 st +1

t +1a

r
t +2 s

t +2
t +2a

r
t +3 st +3

. . .
t +3a

The Learning Task

� The functions r (reward function) and δ (transition function)

are part of the environment and are not necessarily

known to the agent

� The task of the agent is to learn a policy:

for selecting its next action at based on the current

observed state st

),(:statenext resulting and

),(:reward resulting gets

)(: stepat action chooses

 : stepat state observesAgent

,2,1,0 :steps timediscreteat interact t environmen andAgent

1

1

ttt

ttt

tt

t

ass

asrr

sAat

Sst

t

δ=

=

∈

∈

=

+

+

K

AS →:π

Example

reward +1 at [4,3], -1 at [4,2] (final states:)

reward -0.04 for each step leading to a nonterminal

a) specific policy π for the 4x3 world

b) utilities of each state

Trials are sequences of state transitions until it reaches one of the end states.

For example:

(1,1)-.04→(1,2) -.04→(1,3) -.04→(1,2) -.04→(1,3) -.04→(2,3) -.04→(3,3) -.04→(4,3) +1

sub-indices show the reward given to the agent by performing the action

The Learning Task (2)

� Which policy π do we want the agent to learn?

� The policy that produces the greatest possible

cumulative reward for the agent over time.

� Use information from about rewards to learn

� The task of the agent is to learn a policy:

for selecting its next action at based on the current

observed state st

AS →:π

Value Function

� For each possible policy π the agent might adopt,

we can define an evaluation function over states

it

i

i

ttt

r

rrrsV

+

∞

=

++

∑=

+++=

0

1

2

1 ...)(

γ

γγπ

ratediscount theis ,10,

s stateat starting policy followingby generated are ,...r,r where 1tt

≤≤

+

γγ

π

farsighted 10 edshortsight →←γ

The Learning Task (3)

� Formally stated, the agent’s learning task is to

learn a policy π that maximizes Vπ(s) for all

states s.

� Such a policy is an optimal policy and we

denote it by π*:

We will denote V*(s) the value function of the

optimal policy (value function obtained by

executing the optimal policy)

)(),(maxarg* ssV ∀= π
ππ

Exercise

� How do we get the V* value of the bottom left

corner state?

� actions: (up, right, right) or (right, right, up)

� 0 + 0 + γ2 100 = 81

r(s,a) (immediate reward) values

What to Learn

� Passive Reinforcement Learning

� We might try to have the agent learn the

evaluation function V*

� It could then do a lookahead search to choose

best action from any state s because

� A problem:

� This works well if agent knows the transition and

reward functions,

� But when it doesn’t, it can’t choose actions this way

))],((),([maxarg)(* * asVasrs a δγπ +=

),(and),(tttt asasr δ

Q Function

� We define an evaluation function Q(s,a) so that

its value is the maximum discounted

cumulative reward that can be achieved starting

from state s and applying action a :

� Optimal policy:

� We can rewrite using Q function:

� Q is the evaluation function the agent will learn

� If agent learns Q, it can choose optimal action even

without knowing δ!

)),((),(),(* asVasrasQ δγ+=

))],((),([maxarg)(* * asVasrs a δγπ +=

),(maxarg)(* asQs a=π

Q-Learning

Q-Learning (2)

� The agent uses the training rule (aka updating rule)

to learn the Q function as it explores the world

� The agent maintains a table to store the estimated Q

values (for each state-action pair)

� The table can be initially filled with random values or

zeros

� The agent repeatedly observes its current state,

chooses an action and executes it, and observes the

resulting reward (r function) and the new state (δ
function). It then updates the entry for the estimated

Q value,

Q-Learning Algorithm

Q-Learning Example

Exercise

Strategies

� Explotation

� Choose action that maximizes the current estimated Q

value

� Exploration

� Probabilistic approach (probabilities assigned according

to current estimated Q value)

� Actions with higher estimated Q value are assigned higher

probabilities, but every action is assigned a nonzero probability

(of being chosen)

� How do we learn the Q values?

� Training episodes (a sequence of actions from some

start state to the goal)

Evolving estimated Q values

� How will the estimated Q values (table)?

� With all values in the table initialized to 0, the agent will mae

no changes until it reaches the goal and receives a nonzero

reward.

� This will change the value only for the single transition

leading to the goal.

� On the next episode, if the agent passes through this state

adjacent to the goal, its nonzero value will cause an update in

some transition two steps from the goal and so on.

� Given a sufficient number of training episodes the

information will propagate back through the entire state-

action space.

A Real Application: TD-

Gammon

� Learn to play Backgammon

� Immediate rewards

� +100 if win

� -100 if loose

� 0 all other states

� Trained by playing 1.5 million games against

itself

� Now approximately equal to best human player

Subtleties and Ongoing

Research

