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The Reinforcement Learning 

Problem

�How an autonomous agent that senses and 

acts in its environment can learn to 

choose optimal actions to achieve its 

goals?



Crawl before you can walk

� Perhaps our programming isn’t for crawling at 

all, but for the desire for movement!

From R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Reinforcement Learning 

Hypothesis

� Intelligent behavior arises from the actions of 

an individual seeking to maximize its received 

reward signals in a complex and changing 

world.

� Research program:

� identify where reward signals come from,

� develop algorithms that search the space of 

behaviors to maximize reward signals.
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The Agent Learns a Policy

� What is learnt?

� It learns a control strategy, or policy, for 

choosing actions that achieve its goals

� What’s the goal?

� Roughly, the agent’s goal is to get as much 

reward as it can over the long run.

� Reinforcement learning methods specify how the 

agent changes its policy as a result of experience

AS →:π
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The Agent-Environment Interface
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The Learning Task

� The functions r (reward function) and δ (transition function)

are part of the environment and are not necessarily 

known to the agent

� The task of the agent is to learn a policy: 

for selecting its next action at based on the current 

observed state st
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AS →:π



Example

reward +1 at [4,3], -1 at [4,2] (final states: )

reward -0.04 for each step leading to a nonterminal

a) specific policy π for the 4x3 world

b) utilities of each state

Trials are sequences of state transitions until it reaches one of the end states. 

For example:

(1,1)-.04→(1,2) -.04→(1,3) -.04→(1,2) -.04→(1,3) -.04→(2,3) -.04→(3,3) -.04→(4,3) +1

sub-indices show the reward given to the agent by performing the action



The Learning Task (2)

� Which policy π do we want the agent to learn?

� The policy that produces the greatest possible 

cumulative reward for the agent over time.

� Use information from about rewards to learn

� The task of the agent is to learn a policy: 

for selecting its next action at based on the current 

observed state st

AS →:π



Value Function

� For each possible policy π the agent might adopt, 

we can define an evaluation function over states
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The Learning Task (3)

� Formally stated, the agent’s learning task is to 

learn a policy π that maximizes Vπ(s) for all 

states s.

� Such a policy is an optimal policy and we 

denote it by π*:

We will denote V*(s) the value function of the 

optimal policy (value function obtained by 

executing the optimal policy)

)(),(maxarg* ssV ∀= π
ππ



Exercise

� How do we get the V* value of the bottom left 

corner state?

� actions: (up, right, right) or (right, right, up)

� 0 + 0 + γ2 100 = 81

r(s,a) (immediate reward) values



What to Learn

� Passive Reinforcement Learning

� We might try to have the agent learn the 

evaluation function V*

� It could then do a lookahead search to choose 

best action from any state s because 

� A problem:

� This works well if agent knows the transition and 

reward functions, 

� But when it doesn’t, it can’t choose actions this way

))],((),([maxarg)(* * asVasrs a δγπ +=

),( and ),( tttt asasr δ



Q Function

� We define an evaluation function Q(s,a) so that 

its value is the maximum discounted 

cumulative reward that can be achieved starting 

from state s and applying action a :

� Optimal policy:

� We can rewrite using Q function:

� Q is the evaluation function the agent will learn

� If agent learns Q, it can choose optimal action even 

without knowing δ!

)),((),(),( * asVasrasQ δγ+=
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Q-Learning



Q-Learning (2)

� The agent uses the training rule (aka updating rule) 

to learn the Q function as it explores the world

� The agent maintains a table to store the estimated Q 

values (for each state-action pair)

� The table can be initially filled with random values or 

zeros

� The agent repeatedly observes its current state, 

chooses an action and executes it, and observes the 

resulting reward (r function) and the new state (δ
function). It then updates the entry for the estimated 

Q value,  



Q-Learning Algorithm



Q-Learning Example



Exercise



Strategies

� Explotation

� Choose action that maximizes the current estimated Q 

value

� Exploration

� Probabilistic approach (probabilities assigned according 

to current estimated Q value)

� Actions with higher estimated Q value are assigned higher 

probabilities, but every action is assigned a nonzero probability 

(of being chosen)

� How do we learn the Q values?

� Training episodes (a sequence of actions from some 

start state to the goal)



Evolving estimated Q values

� How will the estimated Q values (table)?

� With all values in the table initialized to 0, the agent will mae

no changes until it reaches the goal and receives a nonzero 

reward. 

� This will change the value only for the single transition 

leading to the goal.

� On the next episode, if the agent passes through this state 

adjacent to the goal, its nonzero value will cause an update in 

some transition two steps from the goal and so on.

� Given a sufficient number of training episodes the 

information will propagate back through the entire state-

action space.



A Real Application: TD-

Gammon

� Learn to play Backgammon

� Immediate rewards

� +100 if win

� -100 if loose

� 0 all other states

� Trained by playing 1.5 million games against 

itself 

� Now approximately equal to best human player



Subtleties and Ongoing 

Research


