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Bayesian learning: Bayes’ rule

�Given some model space (set of hypotheses hi) and 

evidence (data D):

� P(hi|D) = α P(D|hi) P(hi)

�We assume that observations are independent of 

each other, given a model (hypothesis), so:

� P(hi|D) = α ∏j P(dj|hi) P(hi)

�To predict the value of some unknown quantity, X

(e.g., the class label for a future observation):

� P(X|D) =  ∑i P(X|D, hi) P(hi|D) = ∑i P(X|hi) P(hi|D)

These are equal by our

independence assumption
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Bayesian learning

� We can apply Bayesian learning in three basic ways:

� BMA (Bayesian Model Averaging): Don’t just choose one 
hypothesis; instead, make predictions based on the weighted average 
of all hypotheses (or some set of best hypotheses)

� MAP (Maximum A Posteriori) hypothesis: Choose the hypothesis 
with the highest a posteriori probability, given the data

� MLE (Maximum Likelihood Estimate): Assume that all 
hypotheses are equally likely a priori; then the best hypothesis is just 
the one that maximizes the likelihood (i.e., the probability of the data 
given the hypothesis)

�MDL (Minimum Description Length) principle: Use 
some encoding to model the complexity of the hypothesis, 
and the fit of the data to the hypothesis, then minimize the 
overall description of hi + D



Naïve Bayes
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Naïve Bayes

�Use Bayesian modeling

�Make the simplest possible independence 

assumption:
� Each attribute is independent of the values of the other 

attributes, given the class variable

� In the restaurant domain:  Cuisine is independent of Patrons, 

given a decision to stay (or not)
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Bayesian Formulation

� p(C | F1, ..., Fn) = p(C) p(F1, ..., Fn | C) / P(F1, ..., Fn)

= α p(C) p(F1, ..., Fn | C) 

� Naïve Bayes assumption

� Assume that each feature Fi is conditionally independent of the 

other features given the class C.  

� Then we have:

p(C | F1, ..., Fn)  = α p(C) Πi p(Fi | C) 
� remember that α is a normalization factor

� We can estimate each of these conditional probabilities 

from the observed counts in the training data:

p(Fi | C)  = #(Fi∧ C) / #(C)
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Restaurant example (training set)

�Ten attributes: Alternative available? Bar in restaurant? Is it 
Friday? Are we hungry? How full is the restaurant? How 
expensive? Is it raining? Do we have a reservation? What type of 
restaurant is it? What’s the purported waiting time?



Naive Bayes: Example

�p(Wait | Cuisine, Patrons, Rain)  = 

α p(Wait) p(Cuisine | Wait) p(Patrons | Wait)  p(Rain| Wait)

� remember that α is a normalization factor

�P(Rain|Wait) = #(Wait ∧ Rain) / #(Rain)

�P(Patrons|Wait) = #(Patrons ∧ Rain) / #(Rain)

� Substitute Wait for Wait=T and Wait=F

� This gives us the actual probabilities (of Wait=T and 

Wait=F)
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Naïve Bayes Classifier
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� Assume target function f: X�V, where each instance (example) x is 

described by attributes <a1, a2, …, an>

� The most probable value of f(x) is:



Naïve Bayes Classifier
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� v�B: Naïve Bayes value

� The value returned by the Naïve Bayes classifier (T or F for the 

restaurant example)

� Remember that we can estimate each of these conditional probabilities 

from the observed counts in the training data:

p(ai | vj)  = #(ai∧ vj) / #(vj)



Naïve Bayes Learning
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� To learn from the examples, we estimate the probabilities from the 

observed counts in the training data:



Learning to classify text



Learning to classify text



Learning to classify text



Learning to classify text



Naive Bayes: Analysis

�Naive Bayes is amazingly easy to implement (once 

you understand the bit of math behind it)

�Remarkably, naive Bayes can outperform many 

much more complex algorithms—it’s a baseline 

that should pretty much always be used for 

comparison

�Naive Bayes can’t capture interdependencies 

between variables (obviously)—for that, we need 

Bayes nets!
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Naïve Bayes in practice

�When to use

� Moderate or large training set available

� Attributes that describe instances are 

conditionally independent given classification

�Successful applications

� Diagnosis

� Classifying text documents

� Detecting spam email
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Exercise: 

Play Tennis example again!

� We to use NaiveBayes to decide whether the weather 
is amenable to playing tennis. Over the course of 2 
weeks, data is collected to help ID3 build a decision 
tree.

� The target (binary) classification is 

� "should we play PlayTennis?" which can be Yes or No

� The weather attributes are outlook, temperature, 
humidity, and wind. They can have the following 
values:
� Outlook = { sunny, overcast, rain }

� Temperature = {hot, mild, cool }

� Humidity = { high, normal }

� Wind = {weak, strong }



Training examples for the target 

concept PlayTennis
Day Outlook Temperature Humidity Wind PlayTennis

1 Sunny Hot High Weak No

2 Sunny Hot High Strong No

3 Overcast Hot High Weak Yes

4 Rain Mild High Weak Yes

5 Rain Cool Normal Weak Yes

6 Rain Cool Normal Strong No

7 Overcast Cool Normal Strong Yes

8 Sunny Mild High Weak No

9 Sunny Cool Normal Weak Yes

10 Rain Mild Normal Weak Yes

11 Sunny Mild Normal Strong Yes

12 Overcast Mild High Strong Yes

13 Overcast Hot Normal Weak Yes

14 Rain Mild High Strong No



Exercise

� Consider a new instance (observation):

<Outlook=sunny, Temperature=cool, Humidity= high, Wind=strong>

� We want to compute (v�B: Naïve Bayes value):

� where V = {y, n} and the ai’s are the values for each attribute given in 
the observation vector (<Outlook=sunny, Temperature=cool, Humidity= high, Wind=strong> )

� That is, the max of:



Exercise

�

α



Learning Bayesian Networks
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Learning Bayesian networks 

� Given training set

� Find B that best matches D

� Learn the structure - model selection 

� Structure is given, learn the conditional probabilities - parameter 

estimation

Data D
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Learning Bayesian networks

� Known structure, fully observable: only need to do 

parameter estimation

� Unknown structure, fully observable: do heuristic search 

through structure space, then parameter estimation

� Known structure, missing values: use expectation 

maximization (EM) to estimate parameters

� Known structure, hidden variables: apply adaptive 

probabilistic network (APN) techniques

� Unknown structure, hidden variables: too hard to solve!
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Learning Bayesian networks

� Known structure, fully observable: only need to do 

parameter estimation

� Unknown structure, fully observable: do heuristic search 

through structure space, then parameter estimation

� Known structure, missing values: use expectation 

maximization (EM) to estimate parameters

� Known structure, hidden variables: apply adaptive 

probabilistic network (APN) techniques

� Unknown structure, hidden variables: too hard to solve!
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Parameter estimation

� Known structure, fully observable: only need to do 

parameter estimation
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Parameter estimation

� Assume known structure

� Goal: estimate BN parameters θθθθ
� entries in local probability models, P(X | Parents(X))

� A parameterization θθθθ is good if it is likely to generate the 

observed data:

� Maximum Likelihood Estimation (MLE) Principle: 

Choose θθθθ∗∗∗∗ so as to maximize L

∏==
m

mdPDPDL )|()|():( θθθθθθθθθθθθ
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Parameter estimation II

� The likelihood decomposes according to the structure of 

the network

→ we get a separate estimation task for each parameter

� The MLE (maximum likelihood estimate) solution:

� for each value x of a node X

� and each instantiation u of Parents(X)

� Just need to collect the counts for every combination of parents 

and children observed in the data

� MLE is equivalent to an assumption of a uniform prior over 

parameter values
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Sufficient statistics: Example

Earthquake Burglary

Alarm

Moon-phase

Light-level

)(
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|
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θ*
A | E, B = N(A, E, B) / N(E, B)



30

Learning Bayesian networks

� Known structure, fully observable: only need to do 

parameter estimation

� Unknown structure, fully observable: do heuristic search 

through structure space, then parameter estimation

� Known structure, missing values: use expectation 

maximization (EM) to estimate parameters

� Known structure, hidden variables: apply adaptive 

probabilistic network (APN) techniques

� Unknown structure, hidden variables: too hard to solve!
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Model selection

Goal: Select the best network structure, given 

the data

Input:

�Training data

� Scoring function

Output:

�A network that maximizes the score

� Unknown structure, fully observable: do heuristic search 

through structure space, then parameter estimation
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Structure selection: Scoring

� Bayesian: prior over parameters and structure

� get balance between model complexity and fit to data as a byproduct

� Score (G:D) = log P(G|D) α log [P(D|G) P(G)]

� Marginal likelihood just comes from our parameter estimates

� Prior on structure can be any measure we want; typically a 

function of the network complexity

Same key property: Decomposability

Score(structure) = Σi Score(family of Xi)

Marginal likelihood
Prior
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Heuristic search
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Exploiting decomposability

B E
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To recompute scores, 

only need to re-score families

that changed in the last move
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Learning Bayesian networks

� Known structure, fully observable: only need to do 

parameter estimation

� Unknown structure, fully observable: do heuristic search 

through structure space, then parameter estimation

� Known structure, missing values: use expectation 

maximization (EM) to estimate parameters

� Known structure, hidden variables: apply adaptive 

probabilistic network (APN) techniques

� Unknown structure, hidden variables: too hard to solve!
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Handling missing data

� Suppose that in some cases, we observe 

earthquake, alarm, light-level, and 

moon-phase, but not burglary

� Should we throw that data away??

� Idea: Guess the missing values

based on the other data

Earthquake Burglary

Alarm

Moon-phase

Light-level
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EM (expectation maximization)

�Guess probabilities for nodes with missing 

values (e.g., based on other observations)

�Compute the probability distribution over 

the missing values, given our guess

�Update the probabilities based on the 

guessed values

�Repeat until convergence
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EM example

� Suppose we have observed Earthquake and Alarm but not 

Burglary for an observation on November 27

� We estimate the CPTs based on the rest of the data

� We then estimate P(Burglary) for November 27 from those 

CPTs

� Now we recompute the CPTs as if that estimated value had 

been observed

� Repeat until convergence!

Earthquake Burglary

Alarm



Unsupervised Learning:

Clustering
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Unsupervised learning

�Learn without a “supervisor” who labels instances

� Clustering

� Scientific discovery

� Pattern discovery

� Associative learning

�Clustering:

� Given a set of instances without labels, partition them 

such that each instance is:

� similar to other instances in its partition (intra-cluster similarity)

� dissimilar from instances in other partitions (inter-cluster 

dissimilarity)
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Clustering techniques

�Agglomerative clustering

� Single-link clustering

� Complete-link clustering

� Average-link clustering

�Partitional clustering

� k-means clustering

�Spectral clustering
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Agglomerative clustering

� Agglomerative:

� Start with each instance in a cluster by itself

� Repeatedly combine pairs of clusters until some stopping criterion is 

reached (or until one “super-cluster” with substructure is found)

� Often used for non-fully-connected data sets (e.g., clustering in a social 

network)

� Single-link:

� At each step, combine the two clusters with the smallest minimum distance 

between any pair of instances in the two clusters (i.e., find the shortest 

“edge” between each pair of clusters

� Average-link:

� Combine the two clusters with the smallest average distance between all 

pairs of instances

� Complete-link:

� Combine the two clusters with the smallest maximum distance between any 

pair of instances
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k-Means

� Partitional:

� Start with all instances in a set, and find the “best” partition

� k-Means:

� Basic idea: use expectation maximization to find the best clusters

� Objective function:  Minimize the within-cluster sum of squared 

distances

� Initialize k clusters by choosing k random instances as cluster 

“centroids” (where k is an input parameter)

� E-step: Assign each instance to its nearest cluster (using Euclidean 

distance to the centroid)

� M-step:  Recompute the centroid as the center of mass of the 

instances in the cluster

� Repeat until convergence is achieved
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