
CMSC 671CMSC 671

Fall 2010Fall 2010

Tue 11/16/10Tue 11/16/10

Machine Learning: Decision TreesMachine Learning: Decision Trees
Chapter 18.1-18.3; 18.8, 18.9

Prof. Laura Zavala, laura.zavala@umbc.edu, ITE 373, 410-455-8775

Based on slides by Tim Finin

What is learning?

� “Learning denotes changes in a system that ...

enable a system to do the same task more

efficiently the next time.” –Herbert Simon

� “Learning is constructing or modifying

representations of what is being experienced.”

–Ryszard Michalski

� “Learning is making useful changes in our minds.”

–Marvin Minsky

Why study learning?

� Understand and improve efficiency of human learning

� Use to improve methods for teaching and tutoring

people (e.g., better computer-aided instruction)

� Discover new things or structure previously unknown

� Examples: data mining, scientific discovery

� Fill in skeletal or incomplete specifications about a domain

� Large, complex AI systems can’t be completely built by

hand and require dynamic updating to incorporate new

information

� Learning new characteristics expands the domain or

expertise and lessens the “brittleness” of the system

� Build agents that can adapt to users, other agents, and their

environment

A general model of learning agents

Different ways of learning

� Supervised versus unsupervised learning

� Learn an unknown function f(X) = Y, where X is an input example
and Y is the desired output.

� Supervised learning implies we are given a training set of (X, Y)
pairs by a “teacher”

� Unsupervised learning means we are only given the Xs and no
explicit feedback function.

Clustering: Detecting potential useful clusters of input examples.

� Reinforcement learning
� Feedback (positive or negative reward) given at the end of a

sequence of steps

� Semi-supervised learning
� A continuum between supervised and unsupervised learning.
� Few labeled examples (training set)

Supervised concept learning

� Given a training set of positive and negative

examples of a concept

� Construct a description that will accurately

classify whether future examples are positive or

negative

� That is, learn some good estimate of function f

given a training set {(x1, y1), (x2, y2), ..., (xn, yn)}

where each yi is either + (positive) or - (negative),

or a probability distribution over +/-

Inductive learning framework

� Raw input data from sensors are typically preprocessed to

obtain a feature vector, X, that adequately describes all of

the relevant features for classifying examples

� Each x is a list of (attribute, value) pairs. For example,

X = [Person:Sue, EyeColor:Brown, Age:Young, Sex:Female]

� The number of attributes (a.k.a. features) is fixed (positive,

finite)

� Each attribute has a fixed, finite number of possible values

(or could be continuous)

� Each example is interpreted as a point in an n-dimensional

feature space, where n is the number of attributes

Inductive learning as search

� Instance space I defines the language for the training and
test instances

� Typically, but not always, each instance i∈I is a feature vector

� Features are sometimes called attributes or variables

� I: V1 x V2 x … x Vk, i = (v1, v2, …, vk)

� Class variable C gives an instance’s class (to be predicted)

� Model space M defines the possible classifiers

� M: I → C, M = {m1, … mn} (possibly infinite)

� Model space is sometimes, but not always, defined in terms of the
same features as the instance space

� Training data can be used to direct the search for a good
(consistent, complete, simple) hypothesis in the model
space

Learning decision trees
�Goal: Build a decision tree to classify examples as positive

or negative instances of a concept using supervised learning

from a training set

�A decision tree is a tree where

� each non-leaf node has associated

with it an attribute (feature)

�each leaf node has associated

with it a classification (+ or -)

�each arc has associated with it one

of the possible values of the attribute

at the node from which the arc is directed

�Generalization: allow for >2 classes

�e.g., for stocks, classify into {sell, hold, buy}

Decision tree-induced partition – example

I

Expressiveness

� Decision trees can express any function of the input attributes.

� E.g., for Boolean functions, truth table row → path to leaf:

� Trivially, there is a consistent decision tree for any training set with
one path to leaf for each example (unless f nondeterministic in x) but it
probably won't generalize to new examples

� We prefer to find more compact decision trees

Inductive learning and bias

� Suppose that we want to learn a function f(x) = y and we

are given some sample (x,y) pairs, as in figure (a)

� There are several hypotheses we could make about this

function, e.g.: (b), (c) and (d)

� A preference for one over the others reveals the bias of our

learning technique, e.g.:

� prefer piece-wise functions (b)

� prefer a smooth function (c)

� prefer a simple function and treat outliers as noise (d)

Preference bias: Ockham’s Razor

� A.k.a. Occam’s Razor, Law of Economy, or Law of

Parsimony

� Principle stated by William of Ockham (1285-1347/49), a

scholastic, that

� “non sunt multiplicanda entia praeter necessitatem”

� or, entities are not to be multiplied beyond necessity

� The simplest consistent explanation is the best

� Therefore, the smallest decision tree that correctly classifies

all of the training examples is best.

R&N’s restaurant domain

� Develop a decision tree to model decision a patron

makes when deciding whether or not to wait for a

table at a restaurant

� Two classes: wait, leave (Yes, No) (T, F)

� Ten attributes: Alternative available? Bar in

restaurant? Is it Friday? Are we hungry? How full

is the restaurant? How expensive? Is it raining?

Do we have a reservation? What type of restaurant

is it? What’s the purported waiting time?

� Training set of 12 examples

� ~ 7000 possible cases

Attribute-based representations

�Examples described by attribute values (Boolean, discrete, continuous)� E.g., situations where I will/won't wait for a table

�Classification of examples is positive (T) or negative (F)

�Serves as a training set

Induced decision tree

Decision Tree Learning: ID3, C4.5

� A greedy algorithm for decision tree construction

developed by Ross Quinlan circa 1987

� Top-down construction of decision tree by recursively

selecting “best attribute” to use at the current node in tree

� Once attribute is selected for current node, generate

child nodes, one for each possible value of selected

attribute

� Partition examples using the possible values of this

attribute, and assign these subsets of the examples to

the appropriate child node

� Repeat for each child node until all examples

associated with a node are either all positive or all

negative

R&N Algorithm

Choosing the best attribute

� Key problem: choosing which attribute to split a
given set of examples

� Some possibilities are:

� Random: Select any attribute at random

� Least-Values: Choose the attribute with the smallest
number of possible values

� Most-Values: Choose the attribute with the largest
number of possible values

� Max-Gain: Choose the attribute that has the largest
expected information gain–i.e., attribute that results in
smallest expected size of subtrees rooted at its children

� The ID3 and C4.5 algorithms use the Max-Gain
method of selecting the best attribute

Choosing an attribute

Idea: a good attribute splits the examples into subsets

that are (ideally) “all positive” or “all negative”

Which is better: Patrons? or Type?

Information theory 101

� Information theory sprang almost fully formed from the
seminal work of Claude E. Shannon at Bell Labs

� A Mathematical Theory of Communication, Bell System
Technical Journal, 1948.

� Intuitions

� Common words (a, the, dog) are shorter than less common ones
(parlimentarian, foreshadowing)

� In Morse code, common (probable) letters have shorter
encodings

� Information is measured in minimum number of bits needed to
store or send some information

� Wikipedia: The measure of data, known as information
entropy, is usually expressed by the average number of bits
needed for storage or communication.

Information theory 101

� Information is measured in bits

� Information conveyed by message depends on its probability

� With n equally probable possible messages, the probability p

of each is 1/n

� Information conveyed by message is log2(n)

� e.g., with 16 messages, then log2 (16) = 4 and we need 4

bits to identify/send each message

� Given probability distribution for n messages P = (p1,p2…pn),

the information conveyed by distribution (aka entropy of P)

is:

I(P) = -(p1*log2 (p1) + p2*log2 (p2) + .. + pn*log2 (pn))

info in msg 2probability of msg 2

Information theory II

� Entropy is the average number of bits/message needed to

represent a stream of messages

� Information conveyed by distribution (a.k.a. entropy of P):

I(P) = -(p1*log2 (p1) + p2*log2 (p2) + .. + pn*log2 (pn))

� Examples:

� If P is (0.5, 0.5) then I(P) = 1 � entropy of a fair coin flip

� If P is (0.67, 0.33) then I(P) = 0.92

� If Pis (0.99, 0.01) then I(P) = 0.08

� If P is (1, 0) then I(P) = 0

Entropy as measure of homogeneity of

examples

� Entropy used to characterize the (im)purity of an arbitrary

collection of examples.

� Given a collection S (e.g. the table with 12 examples for

the restaurant domain), containing positive and negative

examples of some target concept, the entropy of S relative

to its boolean classification is:

I(S) = -(p+*log2 (p+) + p-*log2 (p-))

Entropy([6+, 6-]) = 1 � entropy of the restaurant dataset

Entropy([9+, 5-]) = 0.940

Information for classification

If a set S of records is partitioned into disjoint exhaustive

classes (C1,C2,..,Ck) on the basis of the value of the class

attribute, then information needed to identify class of an

element of T is:

Info(S) = I(P)

where P is the probability distribution of partition (C1,C2,..,Ck):

P = (|C1|/|S|, |C2|/|S|, ..., |Ck|/|S|)

C1

C2

C3

C1

C2
C3

High information

Low information

Information for classification II

If we partition S w.r.t attribute A into sets {S1,S2, ..,Sn} then

the information needed to identify the class of an element of S

becomes the weighted average of the information needed to

identify the class of an element of Si, i.e. the weighted

average of Info(Si):

Info(A,S) = Σ|Si|/|S| * Info(Si)

C1

C2

C3
C1

C2

C3

High information Low information

Information gain

� A chosen attribute A divides the training set E into subsets E1, … , E
v

according to their values for A, where A has v distinct values.

� Consider the quantity IG(S,A), the Information Gain of an attribute A
relative to a collection of examples S, defined as

Gain(S,A) = I(S) – Remainder(A)

� This represents the difference between

� I(S) – the entropy of the original collection S

� Remainder(A) - expected value of the entropy after S is partitioned using
attribute A

� This is the gain in information due to attribute A

� Expected reduction in Entropy

� IG(S,A) or simply IG(A):

∑
= +++

+
=

v

i ii

i

ii

iii

np

n

np

p
I

np

np
Aremainder

1

),()(

)(
||

||
)(),(

)(vAValuesv

v SI
S

S
SIASIG ×−= ∑ ∈

)(),()(Aremainder
np

n

np

p
IAIG −

++
=

Information gain

� Use to rank attributes and build DT (decision tree)

where each node uses attribute with greatest gain

of those not yet considered (in path from root)

� The intent of this ordering is to:

� Create small DTs so records can be identified with few

questions

� Match a hoped-for minimality of the process represented

by the records being considered (Occam’s Razor)

Information gain

For the training set, S:

p = n = 6,

I(6/12, 6/12) = 1 bit

Consider the attributes Patrons and Type (and others too):

Patrons has the highest IG of all attributes and so is chosen by the DTL algorithm as the root

bits 0)]
4

2
,

4

2
(

12

4
)

4

2
,

4

2
(

12

4
)

2

1
,

2

1
(

12

2
)

2

1
,

2

1
(

12

2
[1)(

bits 0541.)]
6

4
,

6

2
(

12

6
)0,1(

12

4
)1,0(

12

2
[1)(

=+++−=

=++−=

IIIITypeIG

IIIPatronsIG

How well does it work?

Many case studies have shown that decision trees are

at least as accurate as human experts.

� A study for diagnosing breast cancer had humans

correctly classifying the examples 65% of the

time; the decision tree classified 72% correct

� British Petroleum designed a decision tree for gas-

oil separation for offshore oil platforms that

replaced an earlier rule-based expert system

� Cessna designed an airplane flight controller using

90,000 examples and 20 attributes per example

Extensions of ID3

� Using gain ratios

� Real-valued data

� Noisy data and overfitting

� Generation of rules

� Setting parameters

� Cross-validation for experimental validation of

performance

� C4.5 is an extension of ID3 that accounts for unavailable

values, continuous attribute value ranges, pruning of

decision trees, rule derivation, and so on

Real-valued data

� Select a set of thresholds defining intervals

�Each interval becomes a discrete value of the attribute

�Use some simple heuristics…

� always divide into quartiles

�Use domain knowledge…

� divide age into infant (0-2), toddler (3 - 5), school-aged (5-8)

� Or treat this as another learning problem

� Try a range of ways to discretize the continuous variable and

see which yield “better results” w.r.t. some metric

� E.g., try midpoint between every pair of values

Noisy data

Many kinds of “noise” can occur in the examples:

� Two examples have same attribute/value pairs, but

different classifications

� Some values of attributes are incorrect because of

errors in the data acquisition process or the

preprocessing phase

� Missing attribute values

� The classification is wrong (e.g., + instead of -) because

of some error

� Some attributes are irrelevant to the decision-making

process, e.g., color of a die is irrelevant to its outcome

Overfitting

� Irrelevant attributes, can result in overfitting the

training example data

� If hypothesis space has many dimensions (large

number of attributes), we may find meaningless

regularity in the data that is irrelevant to the true,

important, distinguishing features

� If we have too little training data, even a reasonable

hypothesis space will ‘overfit’

Overfitting

� Fix by by removing irrelevant features

� E.g., remove ‘year observed’, ‘month observed’,

‘day observed’, ‘observer name’ from feature vector

� Fix by getting more training data

� Fix by pruning lower nodes in the decision tree

� E.g., if gain of the best attribute at a node is below a

threshold, stop and make this node a leaf rather than

generating children nodes

Converting decision trees to rules

� It is easy to derive rules from a decision tree: write a

rule for each path from the root to a leaf

� In that rule the left-hand side is built from the label

of the nodes and the labels of the arcs

�The resulting rules set can be simplified:

� Let LHS be the left hand side of a rule

� LHS’ obtained from LHS by eliminating some conditions

� Replace LHS by LHS' in this rule if the subsets of the

training set satisfying LHS and LHS' are equal

� A rule may be eliminated by using meta-conditions such as

“if no other rule applies”

http://archive.ics.uci.edu/ml

Example: zoo data

http://archive.ics.uci.edu/ml/datasets/Zoo

Zoo data
animal name: string

hair: Boolean

feathers: Boolean

eggs: Boolean

milk: Boolean

airborne: Boolean

aquatic: Boolean

predator: Boolean

toothed: Boolean

backbone: Boolean

breathes: Boolean

venomous: Boolean

fins: Boolean

legs: {0,2,4,5,6,8}

tail: Boolean

domestic: Boolean

catsize: Boolean

type: {mammal, fish,

bird, shellfish, insect,

reptile, amphibian}

animal name: string

hair: Boolean

feathers: Boolean

eggs: Boolean

milk: Boolean

airborne: Boolean

aquatic: Boolean

predator: Boolean

toothed: Boolean

backbone: Boolean

breathes: Boolean

venomous: Boolean

fins: Boolean

legs: {0,2,4,5,6,8}

tail: Boolean

domestic: Boolean

catsize: Boolean

type: {mammal, fish,

bird, shellfish, insect,

reptile, amphibian}

101 examples

aardvark,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal

antelope,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,mammal

bass,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish

bear,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal

boar,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1,mammal

buffalo,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,mammal

calf,1,0,0,1,0,0,0,1,1,1,0,0,4,1,1,1,mammal

carp,0,0,1,0,0,1,0,1,1,0,0,1,0,1,1,0,fish

catfish,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish

cavy,1,0,0,1,0,0,0,1,1,1,0,0,4,0,1,0,mammal

cheetah,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1,mammal

chicken,0,1,1,0,1,0,0,0,1,1,0,0,2,1,1,0,bird

chub,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish

clam,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,shellfish

crab,0,0,1,0,0,1,1,0,0,0,0,0,4,0,0,0,shellfish

…

101 examples

aardvark,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal

antelope,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,mammal

bass,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish

bear,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal

boar,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1,mammal

buffalo,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,mammal

calf,1,0,0,1,0,0,0,1,1,1,0,0,4,1,1,1,mammal

carp,0,0,1,0,0,1,0,1,1,0,0,1,0,1,1,0,fish

catfish,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish

cavy,1,0,0,1,0,0,0,1,1,1,0,0,4,0,1,0,mammal

cheetah,1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1,mammal

chicken,0,1,1,0,1,0,0,0,1,1,0,0,2,1,1,0,bird

chub,0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0,fish

clam,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,shellfish

crab,0,0,1,0,0,1,1,0,0,0,0,0,4,0,0,0,shellfish

…

Zoo example

aima-python> python

>>> from learning import *

>>> zoo

<DataSet(zoo): 101 examples, 18 attributes>

>>> dt = DecisionTreeLearner()

>>> dt.train(zoo)

>>> dt.predict(['shark',0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0])

'fish'

>>> dt.predict(['shark',0,0,0,0,0,1,1,1,1,0,0,1,0,1,0,0])

'mammal’

Zoo example

>> dt.dt

DecisionTree(13, 'legs', {0: DecisionTree(12, 'fins', {0:

DecisionTree(8, 'toothed', {0: 'shellfish', 1: 'reptile'}), 1:

DecisionTree(3, 'eggs', {0: 'mammal', 1: 'fish'})}), 2:

DecisionTree(1, 'hair', {0: 'bird', 1: 'mammal'}), 4:

DecisionTree(1, 'hair', {0: DecisionTree(6, 'aquatic', {0:

'reptile', 1: DecisionTree(8, 'toothed', {0: 'shellfish', 1:

'amphibian'})}), 1: 'mammal'}), 5: 'shellfish', 6:

DecisionTree(6, 'aquatic', {0: 'insect', 1: 'shellfish'}), 8:

'shellfish'})

Zoo example
>>> dt.dt.display()

Test legs

legs = 0 ==> Test fins

fins = 0 ==> Test toothed

toothed = 0 ==> RESULT = shellfish

toothed = 1 ==> RESULT = reptile

fins = 1 ==> Test eggs

eggs = 0 ==> RESULT = mammal

eggs = 1 ==> RESULT = fish

legs = 2 ==> Test hair

hair = 0 ==> RESULT = bird

hair = 1 ==> RESULT = mammal

legs = 4 ==> Test hair

hair = 0 ==> Test aquatic

aquatic = 0 ==> RESULT = reptile

aquatic = 1 ==> Test toothed

toothed = 0 ==> RESULT = shellfish

toothed = 1 ==> RESULT = amphibian

hair = 1 ==> RESULT = mammal

legs = 5 ==> RESULT = shellfish

legs = 6 ==> Test aquatic

aquatic = 0 ==> RESULT = insect

aquatic = 1 ==> RESULT = shellfish

legs = 8 ==> RESULT = shellfish

Zoo example
>>> dt.dt.display()

Test legs

legs = 0 ==> Test fins

fins = 0 ==> Test toothed

toothed = 0 ==> RESULT = shellfish

toothed = 1 ==> RESULT = reptile

fins = 1 ==> Test milk

milk = 0 ==> RESULT = fish

milk = 1 ==> RESULT = mammal

legs = 2 ==> Test hair

hair = 0 ==> RESULT = bird

hair = 1 ==> RESULT = mammal

legs = 4 ==> Test hair

hair = 0 ==> Test aquatic

aquatic = 0 ==> RESULT = reptile

aquatic = 1 ==> Test toothed

toothed = 0 ==> RESULT = shellfish

toothed = 1 ==> RESULT = amphibian

hair = 1 ==> RESULT = mammal

legs = 5 ==> RESULT = shellfish

legs = 6 ==> Test aquatic

aquatic = 0 ==> RESULT = insect

aquatic = 1 ==> RESULT = shellfish

legs = 8 ==> RESULT = shellfish

Add the shark example

to the training set and

retrain

Evaluation methodology
� Standard methodology:

1. Collect large set of examples with correct classifications

2. Randomly divide collection into two disjoint sets: training

and test

3. Apply learning algorithm to training set giving hypothesis H

4. Measure performance of H w.r.t. test set

� Important: keep the training and test sets disjoint!

� Study efficiency and robustness of algorithm: repeat steps

2-4 for different training sets and sizes of training sets

�On modifying algorithm, restart with step 1 to avoid

evolving algorithm to work well on just this collection

Measuring model quality

� How good is a model?

� Predictive accuracy

� False positives / false negatives for a given cutoff threshold

� Loss function (accounts for cost of different types of errors)

� Area under the (ROC) curve

� Minimizing loss can lead to problems with overfitting

� Training error

� Train on all data; measure error on all data

� Subject to overfitting (of course we’ll make good predictions on the

data on which we trained!)

� Regularization

� Attempt to avoid overfitting

� Explicitly minimize the complexity of the function while minimizing

loss. Trade off is modeled with a regularization parameter

50

K-fold Cross Validation

� Problem: getting “ground truth” data can be

expensive

� Problem: ideally need different test data each time

we test

� Problem: experimentation is needed to find right

“feature space” and parameters for ML algorithm

�Goal: minimize amount of training+test data

needed

� Idea: split training data into K subsets, use K-1 for

training, and one for development testing

�Common K values are 5 and 10

K-fold Cross-validation, cont.

� k-fold cross-validation:

� Divide data into k folds

� Train on k-1 folds, use the kth fold to measure error

� Repeat k times; use average error to measure

generalization accuracy

� Statistically valid and gives good accuracy estimates

52

Zoo evaluation

>>> train_and_test(DecisionTreeLearner(), zoo, 0, 10)

1.0

>>> train_and_test(DecisionTreeLearner(), zoo, 90, 100)

0.80000000000000004

>>> train_and_test(DecisionTreeLearner(), zoo, 90, 101)

0.81818181818181823

>>> train_and_test(DecisionTreeLearner(), zoo, 80, 90)

0.90000000000000002

>>> cross_validation(DecisionTreeLearner(), zoo, 10, 20)

0.95500000000000007

>>> leave1out(DecisionTreeLearner(), zoo)

0.97029702970297027

Learning curve
Learning curve = % correct on test set as a function of training set size

Zoo

>>> learningcurve(DecisionTreeLearner(), zoo)

[(2, 1.0), (4, 1.0), (6, 0.98333333333333339), (8,

0.97499999999999998), (10, 0.94000000000000006), (12,

0.90833333333333321), (14, 0.98571428571428577), (16,

0.9375), (18, 0.94999999999999996), (20,

0.94499999999999995), … (86, 0.78255813953488373), (88,

0.73636363636363644), (90, 0.70777777777777795)]

Summary: Decision tree learning

� Inducing decision trees is one of the most widely used

learning methods in practice

� Can out-perform human experts in many problems

� Method for approximating discrete-valued functions

� Capable of learning disjunctive expressions (rules)

� Search over a completely expressive hypothesis space

� Inductive bias: a preference for small trees over large trees

Summary: Decision tree learning

� Strengths include
� Fast

� Simple to implement

� Can convert result to a set of easily interpretable rules

� Empirically valid in many commercial products

� Handles noisy data

� Weaknesses include:
� Univariate splits/partitioning using only one attribute at a time so limits

types of possible trees

� Large decision trees may be hard to understand

� Requires fixed-length feature vectors

� Non-incremental (i.e., batch method)

Instance Based Learning

� Decision trees are a kind of model-based learning

� We take the training instances and use them to build a model of the

mapping from inputs to outputs

� This model (e.g., a decision tree) can be used to make predictions on

new (test) instances

� Another option is to do instance-based learning

� Save all (or some subset) of the instances

� Given a test instance, use some of the stored instances in some way

to make a prediction

� Instance-based methods:

� Nearest neighbor and its variants

� Support vector machines

58

Nearest Neighbor

� Vanilla “Nearest Neighbor”:

� Save all training instances Xi = (Ci, Fi
) in T

� Given a new test instance Y, find the instance Xj that is closest to Y

� Predict class Ci

� What does “closest” mean?

� Usually: Euclidean distance in feature space

� Alternatively: Manhattan distance, or any other distance metric

� What if the data is noisy?

� Generalize to k-nearest neighbor

� Find the k closest training instances to Y

� Use majority voting to predict the class label of Y

� Better yet: use weighted (by distance) voting to predict the class

label

59

Nearest Neighbor Example:

Run Outside (+) or Inside (-)

60

Humidity

Temperature

0

100

0 100

+

+

+

+

-
-

-

-

-

-

-

+

+

• Noisy data

• Not

linearly

separable

Decision tree boundary (not very good...)

??

??

??
??

-

-

??

??

??

SVM

� A support vector machine constructs a hyperplane or set of

hyperplanes in a high or infinite dimensional space, which

can be used for classification, regression or other tasks.

� Intuitively, a good separation is achieved by the hyperplane

that has the largest distance to the nearest training data

points of any class (so-called functional margin), since in

general the larger the margin the lower the generalization

error of the classifier.

� Maximum margin separator

� Linear separating hyperplane: data that are not linearly separable in

the original input space, are easily separable in the higher

dimensional space

� SVMs are currently the best-known classifier on a well-

studied hand-written-character recognition benchmark
61

SVM Classification

62

SVM Mapping

63

� SVMs map data into a sufficiently high dimension where it
is (almost) linearly separable

Decision Trees Exercise

� Suppose we want ID3 to decide whether the weather is
amenable to playing tennis. Over the course of 2 weeks,
data is collected to help ID3 build a decision tree.

� The target (binary) classification is
� "should we play PlayTennis?" which can be Yes or No (T or F; + or -).

� The weather attributes are outlook, temperature, humidity,
and wind. They can have the following values:
� Outlook = { sunny, overcast, rain }

� Temperature = {hot, mild, cool }

� Humidity = { high, normal }

� Wind = {weak, strong }

Training examples for the target

concept PlayTennis

NoStrongHighMildRain14

YesWeakNormalHotOvercast13

YesStrongHighMildOvercast12

YesStrongNormalMildSunny11

YesWeakNormalMildRain10

YesWeakNormalCoolSunny9

NoWeakHighMildSunny8

YesStrongNormalCoolOvercast7

NoStrongNormalCoolRain6

YesWeakNormalCoolRain5

YesWeakHighMildRain4

YesWeakHighHotOvercast3

NoStrongHighHotSunny2

NoWeakHighHotSunny1

PlayTennisWindHumidityTemperatureOutlookDay

Remember …

� Entropy of a given collection S:

I(S) = -(p+*log2 (p+) + p-*log2 (p-))

I([6+, 6-]) = 1 � entropy of the restaurant dataset

I([9+, 5-]) = 0.940

� Information gain of attribute A (on collection S):

)(
||

||
)(),(

)(vAValuesv

v SI
S

S
SIASIG ×−= ∑

∈

Induced decision tree

Summary Learning from Examples

� Supervised learning

� Learn an unknown function f(X) = Y, where X is an input example

and Y is the desired output.

� Supervised learning implies we are given a training set of (X, Y)

pairs by a “teacher”

� Classification: Learning a discrete-valued function

� Regression: Learning a continuous function

� Inductive learning

� Generalizing from examples (finding a hypothesis that agrees with

the examples)

� Ockham’s razor: choose the simplest consistent hypothesis

Summary Learning from Examples

� Model-based learning: use training instances to build a model (of the
mapping from inputs to outputs). � Example: decision trees

� Parametric learning: use training instances to summarize data with a set of
parameters. � Example: Neural Networks

� Non parametric learning: no parameters or model are learned. � Instance-based learning: use all the instances every time in some way to make a
prediction. � Examples: Nearest neighbor and Support vector machines

� Evaluation

� Randomly divide collection into two disjoint sets: training and test;
apply learning algorithm to training set; measure performance on test set

� Applications� SVMs are currently the best-known classifier on a well-studied hand-written-
character recognition benchmark

� Many case studies have shown that decision trees are at least as accurate
as human experts, e.g., diagnosing breast cancer

