CMSC 671 Fall 2010

Thu 11/09/10

Decision Making Under Uncertainty Chapter 16

Prof. Laura Zavala, laura.zavala @umbc.edu, ITE 373, 410-455-8775

Decision Making Under Uncertainty

- Decision theoretic agents
- Combine
- Probability theory
- Utility theory
- Make rational decisions based on
- what it believes
- what it wants

Decision Making Under Uncertainty

- Many environments have multiple possible outcomes
- Some of these outcomes may be good; others may be bad
- Some may be very likely; others unlikely
- What's a poor agent to do??

Probabilistic outcomes

- The probability of outcome s ' given evidence observations e :
- $P\left(\right.$ Result $\left.(a)=s^{\prime} \mid a, e\right)$
- Desirability of a state (agent's preferences):
- $U(s)$
- Expected utility of an action given the evidence:
- $E U(a \mid e)=\sum_{s^{\prime}} P\left(\operatorname{Result}(a)=s^{\prime} \mid a, e\right) U\left(s^{\prime}\right)$
- Maximum expected utility:
- action $=\operatorname{argmax}_{a} E U($ ale $)$

Non-Deterministic vs. Probabilistic Uncertainty

~ Adversarial search

Expected Utility

- Random variable X with n values $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ and distribution $\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}\right)$
E.g.: X is the state reached after doing an action A under uncertainty
- Function U of X
E.g., U is the utility of a state
- The expected utility of A is

$$
\mathrm{EU}[\mathrm{~A}]=\sum_{\mathrm{i}=1, \ldots, \mathrm{n}} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}} \mid \mathrm{A}\right) \mathrm{U}\left(\mathrm{x}_{\mathrm{i}}\right)
$$

One State/One Action Example

One State/Two Actions Example

Introducing Action Costs

MEU Principle

- A rational agent should choose the action that maximizes agent's expected utility
- This is the basis of the field of decision theory
- The MEU principle provides a normative criterion for rational choice of action
- AI is solved!!!

Not quite...

- Must have a complete model of:
- Actions
- Utilities
- States
- Even if you have a complete model, decision making is computationally intractable
- In fact, a truly rational agent takes into account the utility of reasoning as well (bounded rationality)
- Nevertheless, great progress has been made in this area recently, and we are able to solve much more complex decision-theoretic problems than ever before
- $\mathrm{A}>\mathrm{B}$
- The agent prefers A over B
- A~B
- The agent is indifferent between A and B
- $\mathrm{A}>\sim \mathrm{B}$
- The agent prefers A over B or is indifferent between them

Axioms of Utility Theory

- Orderability
- $(A>B) \vee(A<B) \vee(A \sim B)$
- Transitivity
- $(\mathrm{A}>\mathrm{B}) \wedge(\mathrm{B}>\mathrm{C}) \Rightarrow(\mathrm{A}>\mathrm{C})$
- Continuity
- $A>B>C \Rightarrow \exists p[p, A ; 1-p, C] \sim B$
- Substitutability

$$
\text { - } \mathrm{A} \sim \mathrm{~B} \Rightarrow[\mathrm{p}, \mathrm{~A} ; 1-\mathrm{p}, \mathrm{C}] \sim[\mathrm{p}, \mathrm{~B} ; 1-\mathrm{p}, \mathrm{C}]
$$

- Monotonicity
- $A>B \Rightarrow(p \geq q \Leftrightarrow[p, A ; 1-p, B]>\sim[q, A ; 1-q, B])$
- Also for $\mathrm{A} \sim \mathrm{B}$
- Decomposability
- [p,A; 1-p, [q,B; 1-q, C]] ~ [p,A; (1-p)q, B; (1-p)(1-q), C]
- (figure above)

Value Function

- Provides a ranking of alternatives, but not a meaningful metric scale
- Also known as an "ordinal utility function"
- Sometimes, only relative judgments (value functions) are necessary
- At other times, absolute judgments (utility functions) are required

Money Versus Utility

- Money <> Utility
- More money is better, but not always in a linear relationship to the amount of money
- Expected Monetary Value
- TV game show: you have won $\$ 1,000,000$
- Take it or Gamble (flip coin to get $\$ 2,500,000$)
- $\mathrm{EMV}=.5(\$ 0)+.5(2,500,000)=1,250,000$
- $1,250,000>1,000,000$: rational agent should take it right?
- Assign utilities (might be different for average people and billionares)

Money Versus Utility

- Money <> Utility
- More money is better, but not always in a linear relationship to the amount of money
- Expected Monetary Value
- Risk-averse: $\mathrm{U}(\mathrm{L})<\mathrm{U}\left(\mathrm{S}_{\mathrm{EMV}(\mathrm{L})}\right)$
- Risk-seeking: $\mathrm{U}(\mathrm{L})>\mathrm{U}\left(\mathrm{S}_{\mathrm{EMV}(\mathrm{L})}\right)$
- Risk-neutral: $\mathrm{U}(\mathrm{L})=\mathrm{U}\left(\mathrm{S}_{\mathrm{EMV}(\mathrm{L})}\right)$

Multiattribute Utility Theory

- A given state may have multiple utilities
- ...because of multiple evaluation criteria
- ...because of multiple agents (interested parties) with different utility functions
- We will talk about this more later in the semester, when we discuss multi-agent systems and game theory

Decision Networks

- Extend BNs to handle actions and utilities
- Also called influence diagrams
- Use BN inference methods to solve
- Perform Value of Information calculations

Decision Networks cont.

- Chance nodes: random variables, as in BNs
\square - Decision nodes: actions that a decision maker can take
- Utility/value nodes: the utility of an outcome state

R\&N example

- Siting a new airport requires consideration of the disruption caused by construction; the cost of land; the distance from centers of population; the noise of flight operations; safety issues arising from local topography; weather conditions; and so on.

Umbrella Network

Evaluating Decision Networks

- Set the evidence variables for current state
- For each possible value of the decision node:
- Set decision node to that value
- Calculate the posterior probability of the parent nodes of the utility node, using BN inference
- Calculate the resulting utility for each action
- Return the action with the highest utility

Decision Making: Umbrella Network

Should I take my umbrella??

Value of Information (VOI)

- Suppose an agent's current knowledge is e. The value of the current best action α is (slide 4):

$$
E U(\alpha \mid e)=\max _{a} \sum_{s^{\prime}} P\left(\operatorname{Result}(a)=s^{\prime} \mid a, e\right) U\left(s^{\prime}\right)
$$

- The value of the new best action after new evidence e' is obtained ($\mathrm{E}^{\prime}=\mathrm{e}^{\prime}$):

$$
E U\left(\alpha^{\prime} \mid e, e^{\prime}\right)=\max _{a} \sum_{s^{\prime}} P\left(\operatorname{Result}(a)=s^{\prime} \mid a, e, e^{\prime}\right) U\left(s^{\prime}\right)
$$

- The value of information for E ' is therefore:

$$
\operatorname{VOI}\left(E^{\prime}\right)=\sum_{k} P\left(e_{k} \mid e\right) E U\left(\alpha_{e_{k}} \mid e_{k}, e\right)-E U(\alpha \mid e)
$$

Value of Information: Umbrella Network

What is the value of knowing the weather forecast?

