

CMSC 671 Fall 2010

Thu 11/04/10

Probabilistic Reasoning over Time Chapter 15.1 – 15.2, 15.7

Prof. Laura Zavala, laura.zavala@umbc.edu, ITE 373, 410-455-8775

Some material from Lise Getoor, Jean-Claude Latombe, and Daphne Koller

Time and Uncertainty

- The world changes, we need to track and predict it
- Examples: diabetes management, traffic monitoring
- Basic idea: copy state and evidence variables for each time step
 - X_t set of unobservable state variables at time t
 - e.g., BloodSugar_t, StomachContents_t
 - E_t set of evidence variables at time t
 - e.g., MeasuredBloodSugar_t, PulseRate_t, FoodEaten_t
- Assumes discrete time steps

States and Observations

- Process of change is viewed as series of snapshots, each describing the state of the world at a particular time
- Each time slice involves a set or random variables indexed by t:
 - 1. the set of unobservable state variables X_t
 - 2. the set of observable evidence variable E_t
- The observation at time t is $E_t = e_t$ for some set of values e_t
 - The notation $X_{a:b}$ denotes the set of variables from X_a to X_b

• What is the sensor model?

Stationary Process/Markov Assumption

- Markov Assumption: X_t depends on some previous X_is
 - First-order Markov process: $P(X_t|X_{0:t-1}) = P(X_t|X_{t-1})$
 - kth order: depends on previous k time steps
- Sensor Markov assumption: $P(E_t|X_{0:t}, E_{0:t-1}) = P(E_t|X_t)$
- Assume stationary process: transition model $P(X_t|X_{t-1})$ and sensor model $P(E_t|X_t)$ are the same for all t
 - In a stationary process, the changes in the world state are governed by laws that do not themselves change over time
 - The process of change doesn't change

First-order and second-order Markov processes

Complete Joint Distribution

- Given:
 - Transition model: $P(X_t|X_{t-1})$
 - Sensor model: $P(E_t|X_t)$
 - Prior probability: $P(X_0)$
- Then we can specify complete joint distribution:
 - Full joint distribution for BN (slide 10 last class)

$$\boldsymbol{P}(\boldsymbol{x}_1,...,\boldsymbol{x}_n) = \prod_{i=1}^n \boldsymbol{P}(\boldsymbol{x}_i \mid \boldsymbol{\pi}_i)$$

• Using that equation, for any t:

$$P(X_0, X_1, ..., X_t, E_1, ..., E_t) = P(X_0) \prod_{i=1}^t P(X_i | X_{i-1}) P(E_i | X_i)$$

Inference Tasks

- Filtering or monitoring: P(X_tle₁,...,e_t) computing current belief state, given all evidence to date
- Prediction: P(X_{t+k}|e₁,...,e_t) computing prob. of some future state
- Smoothing: P(X_k|e₁,...,e_t) computing prob. of past state (hindsight)
- Most likely explanation:

arg max_{x1,...xt} $\vec{P}(x_1,...,x_t|e_1,...,e_t)$ given sequence of observation, find sequence of states that is most likely to have generated those observations.

Examples

- **Filtering:** What is the probability that it is raining today, given all the umbrella observations up through today?
- **Prediction:** What is the probability that it will rain the day after tomorrow, given all the umbrella observations up through today?
- **Smoothing:** What is the probability that it rained yesterday, given all the umbrella observations through today?
- Most likely explanation: if the umbrella appeared the first three days but not on the fourth, what is the most likely weather sequence to produce these umbrella sightings?

Learning

• EM algorithm (chapter 20)

- Models are updated with estimates from Inference
 - What transitions occurred and what states generated the sensors readings
- Updated model provides new estimates
- The process iterates to convergence

Filtering

- **Filtering**: $P(X_t | e_1, ..., e_t)$ computing current belief state, given all evidence to date
- **Example**: What is the probability that it is raining today, given all the umbrella observations up through today?
 - We use recursive estimation to compute $P(X_{t+1} | e_{1:t+1})$ as a function of e_{t+1} and $P(X_t | e_{1:t})$
 - We can write this as follows:

$$P(X_{t+1} | e_{1:t+1}) = P(X_{t+1} | e_{1:t}, e_{t+1})$$

= $\alpha P(e_{t+1} | X_{t+1}, e_{1:t}) P(X_{t+1} | e_{1:t})$
= $\alpha P(e_{t+1} | X_{t+1}) P(X_{t+1} | e_{1:t})$
= $\alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(X_{t+1} | x_t) P(x_t | e_{1:t})$

This leads to a recursive definition
f_{1:t+1} = αFORWARD(f_{1:t:t},e_{t+1})

Prediction

- **Prediction**: $P(X_{t+k}|e_1,...,e_t)$ computing probability of some future state
- **Example**: What is the probability that it will rain the day after tomorrow, given all the umbrella observations up through today?
 - Filtering without the addition of new evidence (e_{t+1})

 $P(X_{t+1} | e_{1:t})$ instead of $P(X_{t+1} | e_{1:t+1})$

Smoothing

• **Smoothing**: $P(X_k | e_1, ..., e_t)$ computing probability of past state (hindsight)

- **Example**: What is the probability that it rained yesterday, given all the umbrella observations through today?
 - Compute $P(X_k | e_{1:t})$ for $0 \le k \le t$
 - Using a backward message $b_{k+1:t} = P(E_{k+1:t} | X_k)$, we obtain

 $P(X_k | e_{1:t}) = \alpha f_{1:k} b_{k+1:t}$

• The backward message can be computed using

$$b_{k+1:t} = \sum_{x_{k+1}} P(e_{k+1} | x_{k+1}) P(e_{k+2:t} | x_{k+1}) P(x_{k+1} | X_k)$$

• This leads to a recursive definition

•
$$B_{k+1:t} = \alpha BACKWARD(b_{k+2:t}, e_{k+1:t})$$

Probabilistic Temporal Models

- Hidden Markov Models (HMMs)
 - One single state variable (umbrella example is an HMM)
 - For problems with more than one variable, vars are combined into a single "megavariable" with tuples of values. E.g. The state var. for the vacuum world (localization of a robot) is the set of empty squares
- Kalman Filters
 - Handling continuous variables
- Dynamic Bayesian Networks (DBNs)
 - Any number of state variables and evidence variables
 - Includes the previous two

