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Time and Uncertainty

� The world changes, we need to track and predict it

� Examples: diabetes management, traffic monitoring

� Basic idea: copy state and evidence variables for each time 
step

� Xt – set of unobservable state variables at time t

� e.g., BloodSugart, StomachContentst

� Et – set of evidence variables at time t

� e.g., MeasuredBloodSugart, PulseRatet, FoodEatent

� Assumes discrete time steps



States and Observations

� Process of change is viewed as series of snapshots, each 
describing the state of the world at a particular time

� Each time slice involves a set or random variables indexed 
by t:

1. the set of unobservable state variables Xt

2. the set of observable evidence variable Et

� The observation at time t is Et = et for some set of values et

� The notation Xa:b denotes the set of variables from Xa to Xb



Example
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� What is the transition model?

� What is the sensor model?

X’s (state 
variables)

E’s (evidence 
variables or 
sensors)



Stationary Process/Markov Assumption

� Markov Assumption: Xt depends on some previous Xis

� First-order Markov process: 
P(Xt|X0:t-1) = P(Xt|Xt-1)

� kth order: depends on previous k time steps

� Sensor Markov assumption:
P(Et|X0:t, E0:t-1) = P(Et|Xt)

� Assume stationary process: transition model  P(Xt|Xt-1) and sensor 
model P(Et|Xt) are the same for all t

� In a stationary process, the changes in the world state are governed by 
laws that do not themselves change over time

� The process of change doesn’t change



First-order and second-order 

Markov processes



Complete Joint Distribution

� Given:

� Transition model: P(Xt|Xt-1)

� Sensor model: P(Et|Xt)

� Prior probability: P(X0)

� Then we can specify complete joint distribution:

� Full joint distribution for BN (slide 10 last class)

� Using that equation, for any t:
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Inference Tasks

� Filtering or monitoring: P(Xt|e1,…,et)
computing current belief state, given all evidence to date

� Prediction: P(Xt+k|e1,…,et) 
computing prob. of some future state

� Smoothing: P(Xk|e1,…,et) 
computing prob. of past state (hindsight)

� Most likely explanation: 
arg maxx1,..xtP(x1,…,xt|e1,…,et)

given sequence of observation, find sequence of states that is most 
likely to have generated those observations.



Examples

� Filtering: What is the probability that it is raining today, 
given all the umbrella observations up through today?

� Prediction: What is the probability that it will rain the day 
after tomorrow, given all the umbrella observations up 
through today?

� Smoothing: What is the probability that it rained yesterday, 
given all the umbrella observations through today?

� Most likely explanation: if the umbrella appeared the first 
three days but not on the fourth, what is the most likely 
weather sequence to produce these umbrella sightings?



Learning

� Besides the inference tasks, we can also 
learn the transition and sensor models from 
observations.

� EM algorithm (chapter 20)

� Models are updated with estimates from 
Inference

� What transitions occurred and what states generated 
the sensors readings

� Updated model provides new estimates

� The process iterates to convergence



Filtering

� We use recursive estimation to compute P(Xt+1 | e1:t+1) as a function of 
et+1 and P(Xt | e1:t)

� We can write this as follows:

� This leads to a recursive definition
� f1:t+1 = αFORWARD(f1:t:t,et+1)

∑ +++

+++

+++

++++

α=

α=

α=

=

tx

t:1tt1t1t1t

t:11t1t1t

t:11tt:11t1t

1tt:11t1t:11t

)e|x(P)x|X(P)X|e(P

)e|X(P)X|e(P

)e|X(P)e,X|e(P

)e,e|X(P)e|X(P

� Filtering: P(Xt|e1,…,et) computing current belief state, given all evidence to date

� Example: What is the probability that it is raining today, given all the umbrella 
observations up through today?



Prediction

� Filtering without the addition of new evidence (et+1)

� Prediction: P(Xt+k|e1,…,et) computing probability of some future state

� Example: What is the probability that it will rain the day after tomorrow, given 
all the umbrella observations up through today?

)|( :11 tt
eXP +

)|( 1:11 ++
eXP

tinstead of



Smoothing

� Compute P(Xk|e1:t) for 0<= k < t

� Using a backward message bk+1:t = P(Ek+1:t | Xk), we obtain

� P(Xk|e1:t) = αf1:kbk+1:t

� The backward message can be computed using

� This leads to a recursive definition

� Bk+1:t = αBACKWARD(bk+2:t,ek+1:t)
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� Smoothing: P(Xk|e1,…,et) computing probability of past state (hindsight)

� Example: What is the probability that it rained yesterday, given all the 
umbrella observations through today?



Probabilistic Temporal Models

� Hidden Markov Models (HMMs)

� One single state variable (umbrella example is an 
HMM)

� For problems with more than one variable, vars are 
combined into a single “megavariable” with tuples of 
values. E.g. The state var. for the vacuum world 
(localization of a robot) is the set of empty squares

� Kalman Filters

� Handling continuous variables

� Dynamic Bayesian Networks (DBNs)

� Any number of state variables and evidence variables

� Includes the previous two


