

CMSC 671 Fall 2010

Tue 11/02/10

Probabilistic Reasoning Chapter 14.1-14.5

Prof. Laura Zavala, laura.zavala@umbc.edu, ITE 373, 410-455-8775

Bayesian Networks

- Independence and conditional independence among variables can greatly reduce the full joint distribution
- Bayesian Networks
 - A structure used to represent the dependencies among variables

Bayesian Belief Networks (BNs)

• Definition: **BN** = (**DAG**, **CPD**)

- **DAG**: directed acyclic graph (BN's structure)
 - **Nodes**: random variables (typically binary or discrete, but methods also exist to handle continuous variables)
 - Arcs: indicate probabilistic dependencies between nodes (*lack* of link signifies conditional independence)
- **CPD**: conditional probability distribution (BN's **parameters**)
 - Conditional probabilities at each node, usually stored as a table (conditional probability table, or **CPT**)

 $P(x_i | \pi_i)$ where π_i is the set of all parent nodes of x_i

 Root nodes are a special case – no parents, so just use priors in CPD:

 $\pi_i = \emptyset$, so $P(x_i | \pi_i) = P(x_i)$

Example BN

Toothache: boolean variable indicating whether the patient has a toothache Cavity: boolean variable indicating whether the patient has a

cavity cavity

Catch: whether the dentist's probe catches in the cavity

- *Weather* is independent of all the other variables
- *Catch* is conditionally independent of *Toothache* given *Cavity*
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Likewise, *Toothache* is conditionally independent of *Catch* given *Cavity*
 - P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
- Equivalent statement:
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
- Cavity is a direct cause of *Toothache* and *Catch*
- No direct causal relationship exists between Toothache and Catch

Example BN with CPTs

Note that we only specify P(A) etc., not $P(\neg A)$, since they have to add to one

5

Example 2: BN with CPTs (1)

- Your neighbors Mary and John have promised to call you to work whenever they hear the alarm
- John sometimes confuses the phone ringing with the alarm
- Mary likes to hear loud music and sometimes fails to hear the alarm
- Given the evidence of who has or has not called, we want to estimate *P*(*burglary*)

Example 2: BN with CPTs (2)

- The probabilities actually summarize a potentially infinite set of circumstances in which the alarm might fail to go off or John or Mary might fail to call and report it.
- In this way we can deal with a very large world, at least approximately.

Tenuous dependencies

- If there is an earthquake, John and Mary may not call even if they heard the alarm ...
- May not be worth adding the complexity in the network for the small gain in accuracy
 - As we come closer to a fully connected network, the conditional probability tables are the same as the joint distribution

Ordering Matters

- Given an ordering, the parents of a variable is the subset of its predecessors that make it independent of all its other predecessors
- The ordering makes a big difference to the structure of the network
- (a) Order: Mary Calls, John Calls, Alarm, Burglary, Earthquake

Conditional independence and chaining

- Conditional independence assumption
 - $P(x_i | \pi_i, q) = P(x_i | \pi_i)$ where q is any set of variables (nodes) other than x_i and its successors
 - π_i blocks influence of other nodes on x_i and its successors (*q* influences x_i only through variables in π_i)

 With this assumption, the complete joint probability distribution of all variables in the network can be represented by (recovered from) local CPDs by chaining these CPDs:

$$\boldsymbol{P}(\boldsymbol{x}_1,...,\boldsymbol{x}_n) = \prod_{i=1}^n \boldsymbol{P}(\boldsymbol{x}_i \mid \boldsymbol{\pi}_i)$$

Chaining: Example

P(a, b, c, d, e)

- = P(e | a, b, c, d) P(a, b, c, d)
- $= P(e \mid c) P(a, b, c, d)$

- by the product rule by cond. indep. assumption
- = $P(e \mid c) P(d \mid a, b, c) P(a, b, c)$
- = $P(e \mid c) P(d \mid b, c) P(c \mid a, b) P(a, b)$
- = $P(e \mid c) P(d \mid b, c) P(c \mid a) P(b \mid a) P(a)$

Topological semantics

- A node is **conditionally independent** of its **non-descendants** given its **parents**
- A node is **conditionally independent** of all other nodes in the network given its parents, children, and children's parents (also known as its **Markov blanket**)

Representational extensions

- Even though they are more compact than the full joint distribution, CPTs for large networks can require a large number of parameters (O(2^k) where k is the branching factor of the network)
- Compactly representing CPTs
 - Deterministic relationships
 - Noisy-OR
 - Noisy-MAX
- Adding continuous variables
 - Discretization
 - Use density functions (usually mixtures of Gaussians) to build hybrid Bayesian networks (with discrete *and* continuous variables)

Inference in Bayesian Networks

Inference tasks

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

- Simple queries: Compute posterior distribution $P(X_i | E=e)$
 - E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false)
 - P(Burglary | JohnCalls=true, MaryCalls=true) = <0.284, 0.716>
- Conjunctive queries:

 $- P(X_i, X_j | E=e) = P(X_i | e=e) P(X_j | X_i, E=e)$

- Optimal decisions: *Decision networks* include utility information; probabilistic inference is required to find P(outcome | action, evidence)
- Value of information: Which evidence should we seek next?
- **Sensitivity analysis:** Which probability values are most critical?

Approaches to inference

- Exact inference
 - Enumeration
 - Variable elimination
 - Clustering / join tree algorithms
- Approximate inference
 - Stochastic simulation / sampling methods
 - Markov chain Monte Carlo methods
 - Genetic algorithms
 - Neural networks
 - Simulated annealing
 - Mean field theory

Direct inference with BNs

- Instead of computing the joint, suppose we just want the probability for *one* variable
- Exact methods of computation:
 - Enumeration
 - Variable elimination
 - Join trees: get the probabilities associated with every query variable

Inference by enumeration

- Add all of the terms (atomic event probabilities) from the full joint distribution
- If **E** are the evidence (observed) variables and **Y** are the other (unobserved or hidden) variables, then:

 $P(X|e) = \alpha P(X, r) = \alpha \Sigma_y P(X, e, y)$

- Each P(X, E, Y) term can be computed using the chain rule
- Computationally expensive!

Inference by enumeration

- P(Burglary | JohnCalls=true, MaryCalls=true)
- Hidden variables
 - Earthquake and Alarm
- $P(B|j,m) = \alpha P(B, j,m) = \alpha \Sigma_e \Sigma_a P(B, j, m, e, a)$

 $= \alpha \sum_{e} \sum_{a} P(b)P(e)P(a|b,e)P(j|a)P(m|a)$ $= \alpha P(b) \sum_{e} P(e) \sum_{a} P(a|b,e)P(j|a)P(m|a)$

• We loop through the variables in order, multiplying CPT entries as we go

= <0.284, 0.716>

Inference by enumeration

• P(Burglary | JohnCalls=true, MaryCalls=true)

- $P(x_i) = \sum_{\pi i} P(x_i \mid \pi_i) P(\pi_i)$
- Suppose we want P(D=true), and only the value of E is given as true
- P (dle) = $\alpha \Sigma_{ABC} P(a, b, c, d, e)$ = $\alpha \Sigma_{ABC} P(a) P(bla) P(cla) P(dlb,c) P(elc)$
- With simple iteration to compute this expression, there's going to be a lot of repetition (e.g., P(elc) has to be recomputed every time we iterate over C=true)

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

- Basically just enumeration, but with caching of local calculations
- Linear for polytrees (singly connected BNs)
- Potentially exponential for multiply connected BNs

⇒Exact inference in Bayesian networks is NP-hard!

Variable elimination

General idea:

• Write query in the form

$$P(X_n, \boldsymbol{e}) = \sum_{x_k} \cdots \sum_{x_3} \sum_{x_2} \prod_i P(x_i \mid pa_i)$$

- Iteratively
 - Move all irrelevant terms outside of innermost sum
 - Perform innermost sum, getting a new term
 - Insert the new term into the product

Computing factors

- P(Burglary | JohnCalls=true, MaryCalls=true)
- $P(B|j,m) = \alpha P(b) \sum_{e} P(e) \sum_{a} P(a|b,e) P(j|a) P(m|a)$ f1(B) f2(E) f3(A,B,E) f4(A) f5(A)

A more complex example

•

Visit to Smoking Asia Lung Cancer Tuberculosis Abnormality Bronchitis in Chest Dyspnea X-Ray

P(v)P(s)P(t | v)P(/ | s)P(b | s)P(a | t, /)P(x | a)P(d | a, b)

Eliminate: *v*

Compute:
$$f_{v}(t) = \sum_{v} P(v)P(t \mid v)$$

 $\Rightarrow \underline{f_{v}(t)}P(s)P(|s)P(b|s)P(a|t,l)P(x|a)P(d|a,b)$

Note: $f_v(t) = P(t)$ In general, result of elimination is not necessarily a probability term

• Initial factors

 $P(v)P(s)P(t \mid v)P(l \mid s)P(b \mid s)P(a \mid t, l)P(x \mid a)P(d \mid a, b)$ $\Rightarrow f_{v}(t)P(s)P(l \mid s)P(b \mid s)P(a \mid t, l)P(x \mid a)P(d \mid a, b)$

Eliminate: *s*

Compute:
$$f_s(b,l) = \sum_s P(s)P(b \mid s)P(l \mid s)$$

 $\Rightarrow f_{v}(t) \underline{f_{s}(b, l)} P(a \mid t, l) P(x \mid a) P(d \mid a, b)$

Summing on *s* results in a factor with two arguments $f_s(b,l)$ In general, result of elimination may be a function of several variables

• Initial factors

P(v)P(s)P(t | v)P(/|s)P(b|s)P(a|t,/)P(x | a)P(d | a,b) $\Rightarrow f_{v}(t)P(s)P(/|s)P(b|s)P(a|t,/)P(x | a)P(d | a,b)$ $\Rightarrow f_{v}(t)f_{s}(b,/)P(a|t,/)P(x | a)P(d | a,b)$

Eliminate: *x*

Compute: $f_x(a) = \sum_x P(x \mid a)$

 $\Rightarrow f_{v}(t)f_{s}(b,l)\underline{f_{x}(a)}P(a \mid t,l)P(d \mid a,b)$

Note: $f_x(a) = 1$ for all values of $a \parallel$

• Initial factors

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a, b) $\Rightarrow f_{v}(t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a, b)$ $\Rightarrow f_{v}(t)f_{s}(b, l)P(a | t, l)P(x | a)P(d | a, b)$ $\Rightarrow f_{v}(t)f_{s}(b, l)f_{x}(a)P(a | t, l)P(d | a, b)$

Eliminate: *†*

Compute: $f_t(a, l) = \sum_{t} f_v(t) P(a | t, l)$

 $\Rightarrow f_s(b,l)f_x(a)f_t(a,l)P(d \mid a,b)$

- We want to compute *P(d)* • Need to eliminate: *I,a,b*
 - Initial factors

P(v)P(s)P(t | v)P(/ | s)P(b | s)P(a | t, /)P(x | a)P(d | a, b) $\Rightarrow f_{v}(t)P(s)P(/ | s)P(b | s)P(a | t, /)P(x | a)P(d | a, b)$ $\Rightarrow f_{v}(t)f_{s}(b, /)P(a | t, /)P(x | a)P(d | a, b)$ $\Rightarrow f_{v}(t)f_{s}(b, /)f_{x}(a)P(a | t, /)P(d | a, b)$ $\Rightarrow f_{s}(b, /)f_{x}(a)f_{t}(a, /)P(d | a, b)$

Eliminate: /

Compute:

 $f_{I}(a,b) = \sum_{t} f_{s}(b,t) f_{t}(a,t)$

 $\Rightarrow f_{I}(a,b)f_{x}(a)P(d \mid a,b)$

- We want to compute *P(d)* Need to eliminate: *b*
 - Initial factors

P(v)P(s)P(t | v)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a, b) $\Rightarrow f_{v}(t)P(s)P(l | s)P(b | s)P(a | t, l)P(x | a)P(d | a, b)$ $\Rightarrow f_{v}(t)f_{s}(b, l)P(a | t, l)P(x | a)P(d | a, b)$ $\Rightarrow f_{v}(t)f_{s}(b, l)f_{x}(a)P(a | t, l)P(d | a, b)$ $\Rightarrow f_{s}(b, l)f_{x}(a)f_{t}(a, l)P(d | a, b)$ $\Rightarrow f_{l}(a,b)f_{x}(a)P(d | a, b) \Rightarrow f_{a}(b, d) \Rightarrow f_{b}(d)$ Eliminate: a,b Compute:

 $f_a(b,d) = \sum f_i(a,b)f_x(a)p(d \mid a,b) - f_b(d) = \sum f_a(b,a)$

- How do we deal with evidence?
- Suppose we are give evidence V = t, S = f, D = t
- We want to compute P(L, V = t, S = f, D = t)

• We start by writing the factors:

P(v)P(s)P(t | v)P(/ | s)P(b | s)P(a | t, /)P(x | a)P(d | a, b)

- Since we know that V = t, we don't need to eliminate V
- Instead, we can replace the factors P(V) and P(T/V) with

$$f_{P(V)} = P(V = t) \quad f_{p(T|V)}(T) = P(T | V = t)$$

- These "select" the appropriate parts of the original factors given the evidence
- Note that $f_{p(V)}$ is a constant, and thus does not appear in elimination of other variables

 $f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(t)f_{P(b|s)}(b)P(a|t,t)P(x|a)f_{P(d|a,b)}(a,b)$

• Eliminating *X*, we get

 $f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(t)f_{P(b|s)}(b)P(a|t,t)f_{x}(a)f_{P(d|a,b)}(a,b)$

• Eliminating *X*, we get

 $f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(t)f_{P(b|s)}(b)P(a|t,t)f_{x}(a)f_{P(d|a|b)}(a,b)$

• Eliminating *t*, we get

 $f_{P(v)}f_{P(s)}f_{P(l|s)}(l)f_{P(b|s)}(b)f_{t}(a,l)f_{x}(a)f_{P(d|a|b)}(a,b)$

- $f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(t)f_{P(b|s)}(b)P(a|t,t)P(x|a)f_{P(d|a,b)}(a,b)$
- Eliminating *X*, we get

 $f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(t)f_{P(b|s)}(b)P(a|t,t)f_{x}(a)f_{P(d|a|b)}(a,b)$

• Eliminating *t*, we get

 $f_{P(v)}f_{P(s)}f_{P(l|s)}(l)f_{P(b|s)}(b)f_{t}(a,l)f_{x}(a)f_{P(d|a|b)}(a,b)$

• Eliminating *a*, we get

 $f_{P(v)}f_{P(s)}f_{P(s)}(l)f_{P(b|s)}(b)f_{a}(b,l)$

Dealing with evidence Given evidence V = t, S = f, D = tCompute P(L, V = t, S = f, D = t)

Initial factors, after setting evidence:

 $f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(t)f_{P(b|s)}(b)P(a|t,t)P(x|a)f_{P(d|a|b)}(a,b)$

Eliminating \boldsymbol{X} , we get

 $f_{P(v)}f_{P(s)}f_{P(t|v)}(t)f_{P(t|s)}(t)f_{P(b|s)}(b)P(a|t,t)f_{x}(a)f_{P(d|a|b)}(a,b)$

Eliminating *t*, we get ٠

 $f_{P(v)}f_{P(s)}f_{P(/|s)}(/)f_{P(b|s)}(b)f_{t}(a,/)f_{x}(a)f_{P(d|ab)}(a,b)$

Eliminating *a*, we get

 $f_{P(v)}f_{P(s)}f_{P(/|s)}(/)f_{P(b|s)}(b)f_{a}(b,/)$ Eliminating b, we get

 $f_{\rho(v)}f_{\rho(s)}f_{\rho(/|s)}(/)f_{b}(/)$

Variable elimination algorithm

• Let $X_1, ..., X_m$ be an ordering on the non-query variables

• For
$$i = m, ..., 1$$
 $\sum_{X_1} \sum_{X_2} ... \sum_{X_m} \prod_j P(X_j | Parents (X_j))$

- Leave in the summation for X_i only factors mentioning X_i

- Multiply the factors, getting a factor that contains a number for each value of the variables mentioned, including X_i
- Sum out X_i, getting a factor f that contains a number for each value of the variables mentioned, not including X_i
- Replace the multiplied factor in the summation

Complexity of variable elimination

Suppose in one elimination step we compute

$$f_{x}(y_{1},...,y_{k}) = \sum_{x} f'_{x}(x,y_{1},...,y_{k})$$

$$f'_{x}(x,y_{1},...,y_{k}) = \prod_{i=1}^{m} f_{i}(x,y_{1,1},...,y_{1,l_{i}})$$
ires

This requires

$$m \cdot |\operatorname{Val}(X)| \cdot \prod_{i} |\operatorname{Val}(Y_i)|$$

multiplications (for each value for $x, y_1, ..., y_k$, we do *m* multiplications) and

$$|\operatorname{Val}(X)| \cdot \prod_{i} |\operatorname{Val}(Y_i)|$$

additions (for each value of $y_1, ..., y_k$, we do /Va/(X)/ additions)

Complexity is exponential in the number of variables in the intermediate factors
Finding an optimal ordering is NP-hard

Exercise: Variable elimination

Conditioning

- **Conditioning**: Find the network's smallest **cutset** S (a set of nodes whose removal renders the network singly connected)
 - In this network, $S = \{A\}$ or $\{B\}$ or $\{C\}$ or $\{D\}$
- For each instantiation of S, compute the belief update with the polytree algorithm
- Combine the results from all instantiations of S
- Computationally expensive (finding the smallest cutset is in general NP-hard, and the total number of possible instantiations of S is $O(2^{|S|})$)

Approximate Inference

Approaches to inference

- Exact inference
 - Enumeration
 - Variable elimination
 - Clustering / join tree algorithms
- Approximate inference
 - Stochastic simulation / sampling methods
 - Markov chain Monte Carlo methods

Approximate inference: Direct sampling

- Generates events from a network that has no evidence associated with it
- Randomly generate a very large number of instantiations from the BN
 - Generate instantiations for all variables start at root variables and work your way "forward" in topological order
 - Probability distribution conditioned on values assigned to parents
- Use the frequency of values for Z to get estimated probabilities
- Accuracy of the results depends on the size of the sample (asymptotically approaches exact results)

Direct sampling algorithm

return x

function PRIOR-SA	MPLE (bn) returns an event sampled from the prior specified by bn
inputs: bn, a Bay	esian network specifying joint distribution $\mathbf{P}(X_1, \ldots, X_n)$
$\mathbf{x} \leftarrow $ an event with	n elements
foreach variable)	X_i in X_1, \ldots, X_n do
$\mathbf{x}[i] \leftarrow \mathbf{a} \text{ rando}$	m sample from $\mathbf{P}(X_i \mid parents(X_i))$

Direct sampling example

- Sample from $P(Cloudy) = \langle 0.5, 0.5 \rangle$, value is true
- Sample from P(Sprinklerlcloudy) = <0.1, 0.9>, value is false
- Sample from P(Rainlcloudy) = <0.8, 0.2>, value is true
- Sample from P(WetGrassl~sprinkler, rain) = <0.9, 0.1>, value is true
- [true, false, true, true]

Approximate inference: Rejection sampling

- Suppose you are given values for some subset of the variables, E, and want to infer values for unknown variables, Z
- Used to compute conditional probabilities, i.e. P(Xle)
- Randomly generate a very large number of instantiations from the BN
 - Generate instantiations for **all** variables
 - Rejection sampling: Only keep those instantiations that are consistent with the values for E
- Use the frequency of values for Z to get estimated probabilities
- Accuracy of the results depends on the size of the sample (asymptotically approaches exact results)

Rejection sampling example

- Query P(Rainlsprinkler), using 100 samples
 - Out of the 100, 73 have Sprinkler=false
 - We reject them
 - From the 27 left, 8 have Rain=true
 - P(RainlSprinkler) = <0.296, 0.704>

Likelihood weighting

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

- Idea: Don't generate samples that need to be rejected in the first place!
- Sample only from the unknown variables Z
- Weight each sample according to the likelihood that it would occur, given the evidence E

Markov Chain Monte Carlo algorithm

- So called because
 - Markov chain each instance generated in the sample is dependent on the previous instance
 - Monte Carlo statistical sampling method
- Works different from rejection sample and likelihood weighting
 - MCMC generates each sample by making a random change to the preceding example
 - Current state: a value for every variable
 - Next state: Make random changes to the current state

Markov chain Monte Carlo algorithm

- So called because
 - Markov chain each instance generated in the sample is dependent on the previous instance
 - Monte Carlo statistical sampling method
- Perform a random walk through variable assignment space, collecting statistics as you go
 - Start with a random instantiation, consistent with evidence variables
 - At each step, for some nonevidence variable, randomly sample its value, consistent with the other current assignments
- Given enough samples, MCMC gives an accurate estimate of the true distribution of values

Gibbs sampling

• A particular form of MCMC

- Start with a random instantiation, consistent with evidence variables
- Generate next state by randomly sample a value for some nonevidence variable X
 - The sampling for X is done conditioned on the current values of the variables in the Markov blanket of X
- Wanders randomly around the space of possible complete assignments, flipping one variable at a time, but keeping the evidence variables fixed

(from slide 13) Topological semantics

- A node is **conditionally independent** of its **non-descendants** given its **parents**
- A node is **conditionally independent** of all other nodes in the network given its parents, children, and children's parents (also known as its **Markov blanket**)

MCMC Gibbs sampling example

- Query P(Rainlsprinkler, wetgrass)
- Initial state [true, true, false, true]
 - Cloudy is sampled P(Cloudylsprinkler, ~rain)
 - Suppose result is Cloudy=false
 - New state is [false, true, false, true]
 - Rain is sampled P(Rainl~cloudy, sprinkler, wetgrass)
 - Suppose result is Rain=true
- Continue sampling, and normalize frequencies to get result

at the end

- Bayes nets
 - Structure
 - Parameters
 - Conditional independence
 - Chaining
- BN inference
 - Enumeration
 - Variable elimination
 - Sampling methods

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Bayesian Networks

- Independence and conditional independence among variables can greatly reduce the full joint distribution
- Bayesian Networks
 - A structure used to represent the dependencies among variables

Conditional Independence and Chaining

 With this assumption, the complete joint probability distribution of all variables in the network can be represented by (recovered from) local CPDs by chaining these CPDs

- Inference tasks
 - **Simple queries:** Compute posterior distribution $P(X_i | E=e)$
 - E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false)
 - P(Burglary | JohnCalls=true, MaryCalls=true) = <0.284, 0.716>
 - Conjunctive queries:
 - $P(X_i, X_j | E=e) = P(X_i | e=e) P(X_j | X_i, E=e)$
- Exact inference
 - Enumeration
 - Variable elimination
 - Clustering / join tree algorithms
- Approximate inference
 - Stochastic simulation / sampling methods
 - Markov chain Monte Carlo methods

