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Bayesian Networks

� Independence and conditional independence 

among variables can greatly reduce the full 

joint distribution

� Bayesian Networks

� A structure used to represent the dependencies 

among variables
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Bayesian Belief Networks (BNs)

• Definition: BN = (DAG, CPD)
– DAG: directed acyclic graph (BN’s structure)

• Nodes: random variables (typically binary or discrete, but 

methods also exist to handle continuous variables)

• Arcs: indicate probabilistic dependencies between nodes 

(lack of link signifies conditional independence)
– CPD: conditional probability distribution (BN’s parameters)

• Conditional probabilities at each node, usually stored as a table 

(conditional probability table, or CPT)

– Root nodes are a special case – no parents, so just use priors 

in CPD:

iiii xxP  of nodesparent  all ofset   theis    where)|( ππππππππ

)()|( so , iiii xPxP =∅= ππππππππ



Example BN

• Weather is independent of all the other variables

• Catch is conditionally independent of Toothache given Cavity

– P(Catch | Toothache, Cavity) = P(Catch | Cavity)

• Likewise, Toothache is conditionally independent of Catch given Cavity

– P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

• Equivalent statement:

– P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)

• Cavity is a direct cause of Toothache and Catch

• No direct causal relationship exists between Toothache and Catch

Toothache: boolean variable indicating whether the patient 

has a toothache

Cavity: boolean variable indicating whether the patient has a 

cavity

Catch: whether the dentist’s probe catches in the cavity



5

Example BN with CPTs

a

b                    c

d                 e

P(C|A) = 0.2
P(C|¬A) = 0.005

P(B|A) = 0.3
P(B|¬A) = 0.001

P(A) = 0.001

P(D|B,C) = 0.1
P(D|B,¬C) = 0.01
P(D|¬B,C) = 0.01     
P(D|¬B,¬C) = 0.00001

P(E|C) = 0.4
P(E|¬C) = 0.002

Note that we only specify P(A) etc., not P(¬A), since they have to add to one
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Example 2: BN with CPTs (1)

• Your neighbors Mary and John have promised to call you to work 

whenever they hear the alarm

• John sometimes confuses the phone ringing with the alarm

• Mary likes to hear loud music and sometimes fails to hear the alarm

• Given the evidence of who has or has not called, we want to 

estimate P(burglary)
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Example 2: BN with CPTs (2)

• The probabilities actually summarize a potentially infinite set of 

circumstances in which the alarm might fail to go off or John or Mary 

might fail to call and report it.

• In this way we can deal with a very large world, at least approximately.



Tenuous dependencies

• If there is an earthquake, John and Mary may not call even 
if they heard the alarm …

• May not be worth adding the complexity in the network for 
the small gain in accuracy
– As we come closer to a fully connected network, the conditional 

probability tables are the same as the joint distribution



Ordering Matters

• Given an ordering, the parents of a variable is the subset of its 

predecessors that make it independent of all its other predecessors

• The ordering makes a big difference to the structure of the network

• (a) Order: Mary Calls, John Calls, Alarm, Burglary, Earthquake
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• Conditional independence assumption
–

where q is any set of variables 

(nodes) other than       and its successors

– blocks influence of other nodes on     

and its successors (q influences       only

through variables in      )

– With this assumption, the complete  joint probability distribution of all 

variables in the network can be represented by (recovered from) local 

CPDs by chaining these CPDs:

ix 

)|(),...,( 11 ii

n

in xPxxP ππππ=Π=

)|(),|( iiii xPqxP ππππππππ =

ix iππππ ix 

iππππ 

q

ix 

iππππ 

Conditional independence and 

chaining
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Chaining: Example

Computing the joint probability for all variables is easy:

P(a, b, c, d, e) 

= P(e | a, b, c, d) P(a, b, c, d) by the product rule

= P(e | c) P(a, b, c, d) by cond. indep. assumption

= P(e | c) P(d | a, b, c) P(a, b, c) 

= P(e | c) P(d | b, c) P(c | a, b) P(a, b)

= P(e | c) P(d | b, c) P(c | a) P(b | a) P(a)

a

b                    c

d                 e
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Topological semantics

• A node is conditionally independent of its non-descendants

given its parents

• A node is conditionally independent of all other nodes in the 

network given its parents, children, and children’s parents 

(also known as its Markov blanket)
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Representational extensions

• Even though they are more compact than the full joint distribution, 

CPTs for large networks can require a large number of parameters 

(O(2k) where k is the branching factor of the network)

• Compactly representing CPTs

– Deterministic relationships

– Noisy-OR 

– Noisy-MAX

• Adding continuous variables

– Discretization

– Use density functions (usually mixtures of Gaussians) to build hybrid 

Bayesian networks (with discrete and continuous variables)
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Inference in Bayesian Inference in Bayesian 

NetworksNetworks
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Inference tasks

• Simple queries: Compute posterior distribution P(Xi | E=e)

– E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false)

– P(Burglary | JohnCalls=true, MaryCalls=true) = <0.284, 0.716>

• Conjunctive queries:

– P(Xi, Xj | E=e) = P(Xi | e=e) P(Xj | Xi, E=e)

• Optimal decisions: Decision networks include utility 

information; probabilistic inference is required to find 

P(outcome | action, evidence)

• Value of information: Which evidence should we seek next?

• Sensitivity analysis: Which probability values are most 

critical?
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Approaches to inference

• Exact inference 

– Enumeration

– Variable elimination

– Clustering / join tree algorithms

• Approximate inference

– Stochastic simulation / sampling methods

– Markov chain Monte Carlo methods

– Genetic algorithms

– Neural networks

– Simulated annealing

– Mean field theory
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Direct inference with BNs

• Instead of computing the joint, suppose we just want the 

probability for one variable

• Exact methods of computation:

– Enumeration

– Variable elimination

– Join trees: get the probabilities associated with every query variable
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Inference by enumeration

• Add all of the terms (atomic event probabilities) from the 

full joint distribution

• If E are the evidence (observed) variables and Y are the 

other (unobserved or hidden) variables, then:

P(X|e) = α P(X, r) = α ∑y P(X, e, y)

• Each P(X, E, Y) term can be computed using the chain rule

• Computationally expensive!



Inference by enumeration

• P(Burglary | JohnCalls=true, MaryCalls=true)

• Hidden variables

– Earthquake and Alarm

• P(B|j,m)=α P(B, j,m) = α∑e ∑a P(B, j, m,e,a)

=α∑e ∑a P(b)P(e)P(a|b,e)P(j|a)P(m|a)

=αP(b)∑e P(e)∑aP(a|b,e)P(j|a)P(m|a)

• We loop through the variables in order, multiplying CPT 

entries as we go

= <0.284, 0.716>



Inference by enumeration

• P(Burglary | JohnCalls=true, MaryCalls=true)
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Example: Enumeration

• P(xi) = Σ πi P(xi | πi) P(πi)

• Suppose we want P(D=true), and only the value of E is 

given as true

• P (d|e) = α ΣABCP(a, b, c, d, e)

= α ΣABCP(a) P(b|a) P(c|a) P(d|b,c) P(e|c)

• With simple iteration to compute this expression, there’s 

going to be a lot of repetition (e.g., P(e|c) has to be 

recomputed every time we iterate over C=true)

a

b                    c

d                 e



22

Exercise: Enumeration

smart study

prepared fair

pass

p(smart)=.8 p(study)=.6

p(fair)=.9

p(prep|…

)

smar

t
¬¬¬¬smart

study .9 .7

¬¬¬¬study .5 .1

p(pass|…

)

smart ¬¬¬¬smart

prep ¬¬¬¬prep prep ¬¬¬¬prep

fair .9 .7 .7 .2

¬¬¬¬fair .1 .1 .1 .1

Query: What is the 

probability that a student 

studied, given that they pass 

the exam?
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Variable elimination

• Basically just enumeration, but with caching of local 

calculations

• Linear for polytrees (singly connected BNs)

• Potentially exponential for multiply connected BNs

⇒Exact inference in Bayesian networks is NP-hard!
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Variable elimination

General idea:

• Write query in the form

• Iteratively

– Move all irrelevant terms outside of innermost sum

– Perform innermost sum, getting a new term

– Insert the new term into the product

∑ ∑∑∏=

kx x x i

iin paxPXP
3 2

)|(),( Le
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Variable elimination: ExampleVariable elimination: Example

RainSprinkler

Cloudy

WetGrass

∑=
c,s,r

)c(P)c|s(P)c|r(P)s,r|w(P)w(P

∑ ∑=
s,r c

)c(P)c|s(P)c|r(P)s,r|w(P

∑=
s,r

1 )s,r(f)s,r|w(P )s,r(f1
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Computing factors

R S C P(R|C) P(S|C) P(C) P(R|C) P(S|C) P(C)

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

R S f1(R,S) = ∑∑∑∑c P(R|C) P(S|C) P(C)

T T

T F

F T

F F



Variable elimination: Example 2Variable elimination: Example 2

• P(Burglary | JohnCalls=true, MaryCalls=true)

• P(B|j,m) =αP(b)∑e P(e)∑aP(a|b,e)P(j|a)P(m|a)

f1(B) f2(E)       f3(A,B,E)  f4(A)  f5(A)
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A more complex example

Visit to 
Asia Smoking

Lung CancerTuberculosis

Abnormality
in Chest Bronchitis

X-Ray Dyspnea

• “Asia” network:
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V S
LT

A B
X D

),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

• We want to compute P(d)
• Need to eliminate: v,s,x,t,l,a,b

Initial factors
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V S
LT

A B
X D

),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

• We want to compute P(d)
• Need to eliminate: v,s,x,t,l,a,b

Initial factors

Eliminate: v

Note: fv(t) = P(t)
In general, result of elimination is not necessarily a probability 

term

Compute: ∑= vv vtPvPtf )|()()(
),|()|(),|()|()|()()( badPaxPltaPsbPslPsPtfv⇒
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V S
LT

A B
X D

),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

• We want to compute P(d)
• Need to eliminate: s,x,t,l,a,b

• Initial factors

Eliminate: s

Summing on s results in a factor with two arguments fs(b,l)
In general, result of elimination may be a function of several 

variables

Compute: ∑= ss slPsbPsPlbf )|()|()(),(

),|()|(),|()|()|()()( badPaxPltaPsbPslPsPtfv⇒
),|()|(),|(),()( badPaxPltaPlbftf sv⇒
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V S
LT

A B
X D

),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

• We want to compute P(d)
• Need to eliminate: x,t,l,a,b

• Initial factors

Eliminate: x

Note: fx(a) = 1 for all values of a !!

Compute: ∑= xx axPaf )|()(

),|()|(),|()|()|()()( badPaxPltaPsbPslPsPtfv⇒
),|()|(),|(),()( badPaxPltaPlbftf sv⇒

),|(),|()(),()( badPltaPaflbftf xsv⇒
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V S
LT

A B
X D

),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

• We want to compute P(d)
• Need to eliminate: t,l,a,b

• Initial factors

Eliminate: t
Compute: ∑= t vt ltaPtflaf ),|()(),(

),|()|(),|()|()|()()( badPaxPltaPsbPslPsPtfv⇒
),|()|(),|(),()( badPaxPltaPlbftf sv⇒

),|(),|()(),()( badPltaPaflbftf xsv⇒
),|(),()(),( badPlafaflbf txs⇒
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V S
LT

A B
X D

),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

• We want to compute P(d)
• Need to eliminate: l,a,b

• Initial factors

Eliminate: l
Compute: ∑= l tsl laflbfbaf ),(),(),(

),|()|(),|()|()|()()( badPaxPltaPsbPslPsPtfv⇒
),|()|(),|(),()( badPaxPltaPlbftf sv⇒

),|(),|()(),()( badPltaPaflbftf xsv⇒
),|(),()(),( badPlafaflbf txs⇒

),|()(),( badPafbaf xl⇒
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V S
LT

A B
X D

),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

• We want to compute P(d)
• Need to eliminate: b

• Initial factors

Eliminate: a,b
Compute:

∑∑ == b aba xla dbfdfbadpafbafdbf ),()(),|()(),(),(

),|()|(),|()|()|()()( badPaxPltaPsbPslPsPtfv⇒
),|()|(),|(),()( badPaxPltaPlbftf sv⇒

),|(),|()(),()( badPltaPaflbftf xsv⇒
),|()(),( badPafbaf xl⇒ ),|(),()(),( badPlafaflbf txs⇒

)(),( dfdbf ba ⇒⇒
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Dealing with evidence

• How do we deal with evidence?

• Suppose we are give evidence V = t, S = f, D = t
• We want to compute P(L, V = t, S = f, D = t)

V S
LT

A B
X D
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Dealing with evidence 

• We start by writing the factors:

• Since we know that V = t, we don’t need to eliminate V
• Instead, we can replace the factors P(V) and P(T|V) with

• These “select” the appropriate parts of the original factors given the evidence

• Note that fp(V) is a constant, and thus does not appear in elimination of other variables

),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

V S
LT

A B
X D

)|()()( )|()( tVTPTftVPf VTpVP ====
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Dealing with evidence 

• Given evidence V = t, S = f, D = t
• Compute P(L, V = t, S = f, D = t )
• Initial factors, after setting evidence:

),()|(),|()()()( ),|()|()|()|()()( bafaxPltaPbflftfff badPsbPslPvtPsPvP
V S

LT
A B

X D
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• Given evidence V = t, S = f, D = t
• Compute P(L, V = t, S = f, D = t )
• Initial factors, after setting evidence:

• Eliminating x, we get

),()|(),|()()()( ),|()|()|()|()()( bafaxPltaPbflftfff badPsbPslPvtPsPvP
V S

LT
A B

X D

),()(),|()()()( ),|()|()|()|()()( bafafltaPbflftfff badPxsbPslPvtPsPvP

Dealing with evidence 
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Dealing with evidence 

• Given evidence V = t, S = f, D = t
• Compute P(L, V = t, S = f, D = t )
• Initial factors, after setting evidence:

• Eliminating x, we get

• Eliminating t, we get

),()|(),|()()()( ),|()|()|()|()()( bafaxPltaPbflftfff badPsbPslPvtPsPvP
V S

LT
A B

X D

),()(),|()()()( ),|()|()|()|()()( bafafltaPbflftfff badPxsbPslPvtPsPvP
),()(),()()( ),|()|()|()()( bafaflafbflfff badPxtsbPslPsPvP
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Dealing with evidence 

• Given evidence V = t, S = f, D = t
• Compute P(L, V = t, S = f, D = t )
• Initial factors, after setting evidence:

• Eliminating x, we get

• Eliminating t, we get

• Eliminating a, we get

),()|(),|()()()( ),|()|()|()|()()( bafaxPltaPbflftfff badPsbPslPvtPsPvP
V S

LT
A B

X D

),()(),|()()()( ),|()|()|()|()()( bafafltaPbflftfff badPxsbPslPvtPsPvP
),()(),()()( ),|()|()|()()( bafaflafbflfff badPxtsbPslPsPvP

),()()( )|()|()()( lbfbflfff asbPslPsPvP
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Dealing with evidence 

• Given evidence V = t, S = f, D = t
• Compute P(L, V = t, S = f, D = t )
• Initial factors, after setting evidence:

• Eliminating x, we get

• Eliminating t, we get

• Eliminating a, we get

• Eliminating b, we get

),()|(),|()()()( ),|()|()|()|()()( bafaxPltaPbflftfff badPsbPslPvtPsPvP
V S

LT
A B

X D

),()(),|()()()( ),|()|()|()|()()( bafafltaPbflftfff badPxsbPslPvtPsPvP
),()(),()()( ),|()|()|()()( bafaflafbflfff badPxtsbPslPsPvP

),()()( )|()|()()( lbfbflfff asbPslPsPvP
)()()|()()( lflfff bslPsPvP
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Variable elimination algorithm

• Let X1,…, Xm be an ordering on the non-query variables

• For i = m, …, 1

– Leave in the summation for Xi only factors mentioning Xi

– Multiply the factors, getting a factor that contains a number for each value of the 

variables mentioned, including Xi

– Sum out Xi, getting a factor f that contains a number for each value of the variables 

mentioned, not including Xi

– Replace the multiplied factor in the summation

∏∑ ∑∑
j

jj

X XX

))X(Parents|X(P...
1 m2
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∑= x kxkx yyxfyyf ),,,('),,( 11 KK

∏
=

=
mi likx iyyxfyyxf 1 ,1,1,11 ),,(),,,(' KK

Complexity of variable elimination

Suppose in one elimination step we compute

This requires 

multiplications  (for each value for x, y1, …, yk, we do m multiplications) and

additions (for each value of y1, …, yk , we do |Val(X)| additions)►►►►Complexity is exponential in the number of variables in the intermediate factors►►►►Finding an optimal ordering is NP-hard

∏⋅⋅ i iYXm )Val()Val(

∏⋅ i iYX )Val()Val(
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Exercise: Variable elimination

smart study

prepared fair

pass

p(smart)=.8 p(study)=.6

p(fair)=.9

p(prep|…) smart ¬¬¬¬smart

study .9 .7

¬¬¬¬study .5 .1

p(pass|…)
smart ¬¬¬¬smart

prep ¬¬¬¬prep prep ¬¬¬¬prep

fair .9 .7 .7 .2

¬¬¬¬fair .1 .1 .1 .1

Query: What is the 

probability that a student is 

smart, given that they pass 

the exam?
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Conditioning

• Conditioning: Find the network’s smallest cutset S (a set of nodes 

whose removal renders the network singly connected)

– In this network, S = {A} or {B} or {C} or {D}

• For each instantiation of S, compute the belief update with the polytree

algorithm

• Combine the results from all instantiations of S

• Computationally expensive (finding the smallest cutset is in general NP-

hard, and the total number of possible instantiations of S is O(2|S|))

a

b                    c

d                 e
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Approximate InferenceApproximate Inference
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Approaches to inference

• Exact inference 

– Enumeration

– Variable elimination

– Clustering / join tree algorithms

• Approximate inference

– Stochastic simulation / sampling methods

– Markov chain Monte Carlo methods



49

Approximate inference:

Direct sampling

• Generates events from a network that has no evidence 

associated with it

• Randomly generate a very large number of instantiations 

from the BN

– Generate instantiations for all variables – start at root variables and 

work your way “forward” in topological order

– Probability distribution conditioned on values assigned to parents

• Use the frequency of values for Z to get estimated 

probabilities

• Accuracy of the results depends on the size of the sample 

(asymptotically approaches exact results)



Direct sampling algorithm
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Direct sampling example

• Sample from P(Cloudy) = <0.5, 0.5>, value is true

• Sample from P(Sprinkler|cloudy) = <0.1, 0.9>, value is false

• Sample from P(Rain|cloudy) = <0.8, 0.2>, value is true

• Sample from P(WetGrass|~sprinkler, rain) = <0.9, 0.1>, value 

is true

• [true, false, true, true]
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Approximate inference:

Rejection sampling

• Suppose you are given values for some subset of the 
variables, E, and want to infer values for unknown 
variables, Z

• Used to compute conditional probabilities, i.e. P(X|e)

• Randomly generate a very large number of instantiations 
from the BN
– Generate instantiations for all variables

– Rejection sampling: Only keep those instantiations that are 
consistent with the values for E

• Use the frequency of values for Z to get estimated 
probabilities

• Accuracy of the results depends on the size of the sample 
(asymptotically approaches exact results)



Rejection sampling example

• Query P(Rain|sprinkler), using 100 samples

– Out of the 100, 73 have Sprinkler=false 

– We reject them

– From the 27 left, 8 have Rain=true

– P(Rain|Sprinkler)  = <0.296, 0.704>
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Likelihood weighting

• Idea: Don’t generate samples that need to be rejected in the 

first place!

• Sample only from the unknown variables Z

• Weight each sample according to the likelihood that it 

would occur, given the evidence E



55

Markov Chain Monte Carlo algorithm

• So called because

– Markov chain – each instance generated in the sample is dependent 

on the previous instance

– Monte Carlo – statistical sampling method

• Works different from rejection sample and likelihood 

weighting

– MCMC generates each sample by making a random change to the 

preceding example

– Current state: a value for every variable

– Next state: Make random changes to the current state
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Markov chain Monte Carlo algorithm

• So called because

– Markov chain – each instance generated in the sample is dependent 

on the previous instance

– Monte Carlo – statistical sampling method

• Perform a random walk through variable assignment space, 

collecting statistics as you go

– Start with a random instantiation, consistent with evidence variables

– At each step, for some nonevidence variable, randomly sample its 

value, consistent with the other current assignments

• Given enough samples, MCMC gives an accurate estimate 

of the true distribution of values



Gibbs sampling

• A particular form of MCMC

– Start with a random instantiation, consistent with evidence variables

– Generate next state by randomly sample a value for some 

nonevidence variable X

• The sampling for X is done conditioned on the current values of the 

variables in the Markov blanket of X

• Wanders randomly around the space of possible complete 

assignments, flipping one variable at a time, but keeping the 

evidence variables fixed



58

(from slide 13) Topological semantics

• A node is conditionally independent of its non-descendants

given its parents

• A node is conditionally independent of all other nodes in the 

network given its parents, children, and children’s parents 

(also known as its Markov blanket)



MCMC Gibbs sampling example

• Query P(Rain|sprinkler, wetgrass) 

• Initial state [true, true, false, true]

– Cloudy is sampled P(Cloudy|sprinkler, ~rain)

– Suppose result is Cloudy=false

– New state is [false, true, false, true]

– Rain is sampled P(Rain|~cloudy, sprinkler, wetgrass)

– Suppose result is Rain=true

• Continue sampling, and normalize frequencies to get result 

at the end
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Exercise: MCMC sampling

smart study

prepared fair

pass

p(smart)=.8 p(study)=.6

p(fair)=.9

p(prep|…) smart ¬¬¬¬smart

study .9 .7

¬¬¬¬study .5 .1

p(pass|…)
smart ¬¬¬¬smart

prep ¬¬¬¬prep prep ¬¬¬¬prep

fair .9 .7 .7 .2

¬¬¬¬fair .1 .1 .1 .1

Topological order = …?

Random number 

generator: .35, .76, .51, .44, 

.08, .28, .03, .92, .02, .42
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Summary

• Bayes nets

– Structure

– Parameters

– Conditional independence

– Chaining

• BN inference

– Enumeration

– Variable elimination

– Sampling methods



Summary

• Bayesian Networks

• Independence and conditional independence among 

variables can greatly reduce the full joint distribution

• Bayesian Networks

– A structure used to represent the dependencies among variables



Summary

• Conditional Independence and Chaining

– With this assumption, the complete  joint probability distribution of 

all variables in the network can be represented by (recovered from) 

local CPDs by chaining these CPDs
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Summary

• Inference tasks

– Simple queries: Compute posterior distribution P(Xi | E=e)

– E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false)

– P(Burglary | JohnCalls=true, MaryCalls=true) = <0.284, 0.716>

– Conjunctive queries:

– P(Xi, Xj | E=e) = P(Xi | e=e) P(Xj | Xi, E=e)

• Exact inference 

– Enumeration

– Variable elimination

– Clustering / join tree algorithms

• Approximate inference

– Stochastic simulation / sampling methods

– Markov chain Monte Carlo methods


