CMSC 671 Fall 2010

Tue 11/02/10

Probabilistic Reasoning Chapter 14.1-14.5

Prof. Laura Zavala, laura.zavala @umbc.edu, ITE 373, 410-455-8775

Bayesian Networks

- Independence and conditional independence among variables can greatly reduce the full joint distribution
- Bayesian Networks
- A structure used to represent the dependencies among variables

Bayesian Belief Networks (BNs)

- Definition: BN = (DAG, CPD)
- DAG: directed acyclic graph (BN's structure)
- Nodes: random variables (typically binary or discrete, but methods also exist to handle continuous variables)
- Arcs: indicate probabilistic dependencies between nodes (lack of link signifies conditional independence)
- CPD: conditional probability distribution (BN's parameters)
- Conditional probabilities at each node, usually stored as a table (conditional probability table, or CPT)
$\boldsymbol{P}\left(\boldsymbol{x}_{\boldsymbol{i}} \mid \boldsymbol{\pi}_{\boldsymbol{i}}\right)$ where $\boldsymbol{\pi}_{\boldsymbol{i}}$ is the set of all parent nodes of $\boldsymbol{x}_{\boldsymbol{i}}$
- Root nodes are a special case - no parents, so just use priors in CPD:

$$
\pi_{i}=\varnothing \text {, so } \boldsymbol{P}\left(\boldsymbol{x}_{i} \mid \pi_{i}\right)=\boldsymbol{P}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)
$$

Example BN

Toothache: boolean variable indicating whether the patient has a toothache
Cavity: boolean variable indicating whether the patient has a cavity
Catch: whether the dentist's probe catches in the cavity

- Weather is independent of all the other variables
- Catch is conditionally independent of Toothache given Cavity
$-\mathrm{P}($ Catch I Toothache, Cavity $)=\mathrm{P}($ Catch I Cavity $)$
- Likewise, Toothache is conditionally independent of Catch given Cavity
- P(Toothache I Catch, Cavity) $=\mathrm{P}($ Toothache I Cavity $)$
- Equivalent statement:
-P (Toothache, Catch I Cavity) $=\mathrm{P}($ Toothache I Cavity) $\mathrm{P}($ Catch I Cavity $)$
- Cavity is a direct cause of Toothache and Catch
- No direct causal relationship exists between Toothache and Catch

Example BN with CPTs

Note that we only specify $\mathrm{P}(\mathrm{A})$ etc., not $\mathrm{P}(\neg \mathrm{A})$, since they have to add to one

Example 2: BN with CPTs (1)

- Your neighbors Mary and John have promised to call you to work whenever they hear the alarm
- John sometimes confuses the phone ringing with the alarm
- Mary likes to hear loud music and sometimes fails to hear the alarm
- Given the evidence of who has or has not called, we want to estimate P (burglary)

Example 2: BN with CPTs (2)

- The probabilities actually summarize a potentially infinite set of circumstances in which the alarm might fail to go off or John or Mary might fail to call and report it.
- In this way we can deal with a very large world, at least approximately.

Tenuous dependencies

- If there is an earthquake, John and Mary may not call even if they heard the alarm ...
- May not be worth adding the complexity in the network for the small gain in accuracy
- As we come closer to a fully connected network, the conditional probability tables are the same as the joint distribution

Ordering Matters

- Given an ordering, the parents of a variable is the subset of its predecessors that make it independent of all its other predecessors
- The ordering makes a big difference to the structure of the network
- (a) Order: Mary Calls, John Calls, Alarm, Burglary, Earthquake

Conditional independence and chaining

- Conditional independence assumption
$-\boldsymbol{P}\left(\boldsymbol{x}_{i} \mid \pi_{i}, \boldsymbol{q}\right)=\boldsymbol{P}\left(\boldsymbol{x}_{i} \mid \pi_{i}\right)$ where \boldsymbol{q} is any set of variables (nodes) other than $\boldsymbol{x}_{\boldsymbol{i}}$ and its successors
- $\boldsymbol{\pi}_{\boldsymbol{i}}$ blocks influence of other nodes on $\boldsymbol{x}_{\boldsymbol{i}}$ and its successors (\boldsymbol{q} influences $\boldsymbol{x}_{\boldsymbol{i}}$ only

q through variables in $\boldsymbol{\pi}_{i}$)
- With this assumption, the complete joint probability distribution of all variables in the network can be represented by (recovered from) local CPDs by chaining these CPDs:

$$
\boldsymbol{P}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)=\prod_{i=1}^{n} \boldsymbol{P}\left(\boldsymbol{x}_{i} \mid \pi_{i}\right)
$$

Chaining: Example

Computing the joint probability for all variables is easy:

$$
\begin{array}{ll}
\mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}) & \\
\quad=\mathrm{P}(\mathrm{e} \mid \mathrm{a}, \mathrm{~b}, \boldsymbol{c}, \mathrm{~d}) \mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}) & \text { by the product rule } \\
=\mathrm{P}(\mathrm{e} \mid \mathrm{c}) \mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}) & \text { by cond. indep. assumption } \\
=\mathrm{P}(\mathrm{e} \mid c) \mathrm{P}(\mathrm{~d} \mid \mathrm{a}, \boldsymbol{b}, \boldsymbol{c}) \mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c}) & \\
=\mathrm{P}(\mathrm{e} \mid c) \mathrm{P}(\mathrm{~d} \mid \mathrm{b}, \mathrm{c}) \mathrm{P}(\mathrm{c} \mid \boldsymbol{a}, \mathrm{b}) \mathrm{P}(\mathrm{a}, \mathrm{~b}) & \\
=\mathrm{P}(\mathrm{e} \mid c) \mathrm{P}(\mathrm{~d} \mid \mathrm{b}, \mathrm{c}) \mathrm{P}(\mathrm{c} \mid \mathrm{a}) \mathrm{P}(\mathrm{~b} \mid \mathrm{a}) \mathrm{P}(\mathrm{a})
\end{array}
$$

Topological semantics

- A node is conditionally independent of its non-descendants given its parents
- A node is conditionally independent of all other nodes in the network given its parents, children, and children's parents (also known as its Markov blanket)

Representational extensions

- Even though they are more compact than the full joint distribution, CPTs for large networks can require a large number of parameters $\left(\mathrm{O}\left(2^{\mathrm{k}}\right)\right.$ where k is the branching factor of the network)
- Compactly representing CPTs
- Deterministic relationships
- Noisy-OR
- Noisy-MAX
- Adding continuous variables
- Discretization
- Use density functions (usually mixtures of Gaussians) to build hybrid Bayesian networks (with discrete and continuous variables)

Inference in Bayesian Networks

Inference tasks

- Simple queries: Compute posterior distribution $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{E}=\mathrm{e}\right)$
- E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false)
- P(Burglary | JohnCalls=true, MaryCalls=true) $=<0.284,0.716>$
- Conjunctive queries:
$-P\left(X_{i}, X_{j} \mid E=e\right)=P\left(X_{i} \mid e=e\right) P\left(X_{j} \mid X_{i}, E=e\right)$
- Optimal decisions: Decision networks include utility information; probabilistic inference is required to find P(outcome I action, evidence)
- Value of information: Which evidence should we seek next?
- Sensitivity analysis: Which probability values are most critical?

Approaches to inference

- Exact inference
- Enumeration
- Variable elimination
- Clustering / join tree algorithms
- Approximate inference
- Stochastic simulation / sampling methods
- Markov chain Monte Carlo methods
- Genetic algorithms
- Neural networks
- Simulated annealing
- Mean field theory

Direct inference with BNs

- Instead of computing the joint, suppose we just want the probability for one variable
- Exact methods of computation:
- Enumeration
- Variable elimination
- Join trees: get the probabilities associated with every query variable

Inference by enumeration

- Add all of the terms (atomic event probabilities) from the full joint distribution
- If \mathbf{E} are the evidence (observed) variables and \mathbf{Y} are the other (unobserved or hidden) variables, then:

$$
\mathrm{P}(\mathrm{X} \mid \mathbf{e})=\alpha \mathrm{P}(\mathrm{X}, \mathbf{r})=\alpha \Sigma_{\mathrm{y}} \mathrm{P}(\mathrm{X}, \mathbf{e}, \mathbf{y})
$$

- Each $\mathrm{P}(\mathrm{X}, \mathbf{E}, \mathbf{Y})$ term can be computed using the chain rule
- Computationally expensive!

Inference by enumeration

- P(Burglary | JohnCalls=true, MaryCalls=true)
- Hidden variables
- Earthquake and Alarm
- $\mathrm{P}(\mathrm{Blj}, \mathrm{m})=\alpha \mathrm{P}(\mathrm{B}, \mathbf{j}, \mathbf{m})=\alpha \Sigma_{\mathrm{e}} \Sigma_{\mathrm{a}} \mathrm{P}(\mathrm{B}, \mathbf{j}, \mathbf{m}, \mathbf{e}, \mathbf{a})$

$$
\begin{aligned}
& =\alpha \sum_{\mathrm{e}} \Sigma_{\mathrm{a}} \mathrm{P}(\mathrm{~b}) \mathrm{P}(\mathrm{e}) \mathrm{P}(\mathrm{alb}, \mathrm{e}) \mathrm{P}(\mathrm{j} \mid \mathrm{a}) \mathrm{P}(\mathrm{~m} \mid \mathrm{a}) \\
& =\alpha \mathrm{P}(\mathrm{~b}) \sum_{\mathrm{e}} \mathrm{P}(\mathrm{e}) \sum_{\mathrm{a}} \mathrm{P}(\mathrm{alb}, \mathrm{e}) \mathrm{P}(\mathrm{j} \mid \mathrm{a}) \mathrm{P}(\mathrm{~m} \mid \mathrm{a})
\end{aligned}
$$

- We loop through the variables in order, multiplying CPT entries as we go

$$
=<0.284,0.716>
$$

Inference by enumeration

- P(Burglary | JohnCalls=true, MaryCalls=true)

Example: Enumeration

- $\mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)=\sum_{\pi \mathrm{i}} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \mid \pi_{\mathrm{i}}\right) \mathrm{P}\left(\pi_{\mathrm{i}}\right)$
- Suppose we want $\mathrm{P}(\mathrm{D}=$ true $)$, and only the value of E is given as true
- $\mathrm{P}(\mathrm{dle})=\alpha \Sigma_{\mathrm{ABC}} \mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e})$

$$
=\alpha \Sigma_{\mathrm{ABC}} \mathrm{P}(\mathrm{a}) \mathrm{P}(\mathrm{bla}) \mathrm{P}(\mathrm{cla}) \mathrm{P}(\mathrm{dlb}, \mathrm{c}) \mathrm{P}(\mathrm{elc})
$$

- With simple iteration to compute this expression, there's going to be a lot of repetition (e.g., $\mathrm{P}(\mathrm{elc})$ has to be recomputed every time we iterate over $\mathrm{C}=$ true)

Exercise: Enumeration

p(pass)	smart		\neg smart	
	prep	\neg prep	prep	\neg prep
fair	.9	.7	.7	.2
ffair	.1	.1	.1	.1

Query: What is the probability that a student studied, given that they pass

Variable elimination

- Basically just enumeration, but with caching of local calculations
- Linear for polytrees (singly connected BNs)
- Potentially exponential for multiply connected BNs
\Rightarrow Exact inference in Bayesian networks is NP-hard!

Variable elimination

General idea:

- Write query in the form

$$
P\left(X_{n}, \boldsymbol{e}\right)=\sum_{x_{k}} \cdots \sum_{x_{3}} \sum_{x_{2}} \prod_{i} P\left(x_{i} \mid p a_{i}\right)
$$

- Iteratively
- Move all irrelevant terms outside of innermost sum
- Perform innermost sum, getting a new term
- Insert the new term into the product

Variable elimination: Example

$$
\begin{aligned}
\mathrm{P}(\mathrm{w}) & =\sum_{\mathrm{r}, \mathrm{~s}, \mathrm{c}} \mathrm{P}(\mathrm{w} \mid \mathrm{r}, \mathrm{~s}) \mathrm{P}(\mathrm{r} \mid \mathrm{c}) \mathrm{P}(\mathrm{~s} \mid \mathrm{c}) \mathrm{P}(\mathrm{c}) \\
& =\sum_{\mathrm{r}, \mathrm{~s}} \mathrm{P}(\mathrm{w} \mid \mathrm{r}, \mathrm{~s}) \sum_{\mathrm{c}}^{\mathrm{P}(\mathrm{r} \mid \mathrm{c}) \mathrm{P}(\mathrm{~s} \mid \mathrm{c}) \mathrm{P}(\mathrm{c})} \\
& =\sum_{\mathrm{r} \cdot} \mathrm{P}(\mathrm{w} \mid \mathrm{r}, \mathrm{~s}) \mathrm{f}_{1}(\mathrm{r}, \mathrm{~s})
\end{aligned}
$$

Computing factors

Variable elimination: Example 2

- P(Burglary | JohnCalls=true, MaryCalls=true)
- $\mathrm{P}(\mathrm{B} \mid \mathrm{j}, \mathrm{m})=\alpha \mathrm{P}(\mathrm{b}) \sum_{\mathrm{e}} \mathrm{P}(\mathrm{e}) \sum_{\mathrm{a}} \mathrm{P}(\mathrm{alb}, \mathrm{e}) \mathrm{P}(\mathrm{j} \mid \mathrm{a}) \mathrm{P}(\mathrm{mla})$

$$
\mathrm{f} 1(\mathrm{~B}) \quad \mathrm{f} 2(\mathrm{E}) \quad \mathrm{f} 3(\mathrm{~A}, \mathrm{~B}, \mathrm{E}) \mathrm{f} 4(\mathrm{~A}) \mathrm{f} 5(\mathrm{~A})
$$

A more complex example

- "Asia" network:

- We want to compute $P(d)$ Need to eliminate: $v, s, x, t, 1, a, b$

Initial factors

$P(v) P(s) P(t \mid v) P(/ \mid s) P(b \mid s) P(a \mid t, /) P(x \mid a) P(d \mid a, b)$

- We want to compute $P(d)$

Need to eliminate: $v, s, x, t, 1, a, b$

Initial factors

$P(v) P(s) P(t \mid v) P(/ \mid s) P(b \mid s) P(a \mid t, /) P(x \mid a) P(d \mid a, b)$
Eliminate: v
Compute:

$$
f_{v}(t)=\sum_{v} P(v) P(t \mid v)
$$

$\Rightarrow \underline{f_{v}}(f) P(s) P(/ \mid s) P(b \mid s) P(a \mid t, /) P(x \mid a) P(d \mid a, b)$

Note: $f_{v}(t)=P(t)$
In general, result of elimination is not necessarily a probability term

- We want to compute $P(d)$

Need to eliminate: $s, x,+1, a, b$

- Initial factors

$P(v) P(s) P(t \mid v) P(/ \mid s) P(b \mid s) P(a \mid t, /) P(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) P(s) P(/ \mid s) P(b \mid s) P(a \mid t, /) P(x \mid a) P(d \mid a, b)$
Eliminate: s
Compute:

$$
f_{s}(b, /)=\sum_{s} P(s) P(b \mid s) P(/ \mid s)
$$

$\Rightarrow f_{v}(t) f_{s}(b, /) P(a \mid t, /) P(x \mid a) P(d \mid a, b)$
Summing on S results in a factor with two arguments $f_{s}(b, l)$ In general, result of elimination may be a function of several variables

- We want to compute $P(d)$

Need to eliminate: $x, \neq 1, a, b$

- Initial factors

$P(v) P(s) P(t \mid v) P(/ \mid s) P(b \mid s) P(a \mid t, /) P(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) P(s) P(/ \mid s) P(b \mid s) P(a \mid t, /) P(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) f_{s}(b, /) P(a \mid t, /) P(x \mid a) P(d \mid a, b)$
Eliminate: \boldsymbol{x}
Compute:

$$
f_{x}(a)=\sum_{x} P(x \mid a)
$$

$\Rightarrow f_{v}(t) f_{s}(b, /) \underline{f_{x}(a)} P(a \mid t, /) P(d \mid a, b)$
Note: $f_{x}(a)=1$ for all values of $a!!$

- We want to compute $P(d)$ Need to eliminate: $+1, a, b$
- Initial factors

$P(v) P(s) P(t \mid v) P(/ \mid s) P(b \mid s) P(a \mid t, /) P(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) P(s) P(/ \mid s) P(b \mid s) P(a \mid t, /) P(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) f_{s}(b, /) P(a \mid t, /) P(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) f_{s}(b, /) f_{x}(a) P(a \mid t, /) P(d \mid a, b)$
Eliminate: \dagger
Compute: $\quad f_{t}(a, /)=\sum_{t} f_{v}(t) P(a \mid t, /)$
$\Rightarrow f_{s}(b, /) f_{x}(a) f_{t}(a, /) P(d \mid a, b)$
- We want to compute $P(d)$

Need to eliminate: $1, a, b$

- Initial factors

$P(v) P(s) P(t \mid v) P(/ \mid s) P(b \mid s) P(a \mid t, /) P(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) P(s) P(/ \mid s) P(b \mid s) P(a \mid t, /) P(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) f_{s}(b, /) P(a \mid t, /) P(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) f_{s}(b, /) f_{x}(a) P(a \mid t, /) P(d \mid a, b)$
$\Rightarrow f_{s}(b, /) f_{x}(a) f_{t}(a, /) P(d \mid a, b)$
Eliminate: /
Compute:

$$
f_{l}(a, b)=\sum_{l} f_{s}(b, /) f_{t}(a, /)
$$

$\Rightarrow f_{1}(a, b) f_{x}(a) P(d \mid a, b)$

- We want to compute $P(d)$

Need to eliminate: b

- Initial factors

$P(v) P(s) P(t \mid v) P(/ \mid s) P(b \mid s) P(a \mid t, /) P(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) P(s) P(/ \mid s) P(b \mid s) P(a \mid t, /) P(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) f_{s}(b, /) P(a \mid t, /) P(x \mid a) P(d \mid a, b)$
$\Rightarrow f_{v}(t) f_{s}(b, /) f_{x}(a) P(a \mid t, /) P(d \mid a, b)$
$\Rightarrow f_{s}(b, /) f_{x}(a) f_{t}(a, /) P(d \mid a, b)$
$\Rightarrow f_{l}(a, b) f_{x}(a) P(d \mid a, b) \Rightarrow f_{\underline{f}}(b, d) \Rightarrow \underline{f_{b}(d)}$
Eliminate: a, b
Compute:

$$
f_{0}(b, d)=\sum f_{1}(a, b) f_{x}(a) p(d \mid a, b)-f_{b}(d)=\sum f(b, d)
$$

Dealing with end eris

- How do we deal with evidence?
- Suppose we are give evidence $V=t, S=f, D=t$

- We want to compute $P(L, V=t, S=f, D=t)$

Dealing with evident

- We start by writing the factors:

$P(v) P(s) P(t \mid v) P(/ \mid s) P(b \mid s) P(a \mid t, /) P(x \mid a) P(d \mid a, b)$
- Since we know that $V=t$, we don't need to eliminate V
- Instead, we can replace the factors $P(V)$ and $P(T / V)$ with

$$
f_{P(V)}=P(V=t) \quad f_{p(T \mid V)}(T)=P(T \mid V=t)
$$

- These "select" the appropriate parts of the original factors given the evidence
- Note that $f_{p(V)}$ is a constant, and thus does not appear in elimination of other variables

Dealing with evidens

- Given evidence $V=t, S=f, D=t$
- Compute $P(L, V=t, S=f, D=t)$
- Initial factors, after setting evidence:

$$
f_{P(v)} f_{P(s)} f_{P(t \mid v)}(f) f_{P(| | s)}(I) f_{P(b \mid s)}(b) P(a \mid t, /) P(x \mid a) f_{P(d \mid a, b)}(a, b)
$$

Dealing with evidence

- Given evidence $V=t, S=f, D=t$
- Compute $P(L, V=t, S=f, D=t)$
- Initial factors, after setting evidence:

$$
f_{P(v)} f_{P(s)} f_{P(f \mid v)}(t) f_{P(/ \mid s)}(/) f_{P(b \mid s)}(b) P(a \mid t, /) P(x \mid a) f_{P(d \mid a, b)}(a, b)
$$

- Eliminating x, we get

$$
f_{P(v)} f_{P(s)} f_{P(t \mid v)}(t) f_{P(| | s)}(/) f_{P(b \mid s)}(b) P(a \mid t, /) f_{X}(a) f_{P(d \mid a, b)}(a, b)
$$

Dealing with eviden(V)

- Given evidence $V=t, S=f, D=t$
- Compute $P(L, V=t, S=f, D=t)$
- Initial factors, after setting evidence:

$$
f_{P(v)} f_{P(s)} f_{P(f \mid v)}(t) f_{P(/ \mid s)}(/) f_{P(b \mid s)}(b) P(a \mid t, /) P(x \mid a) f_{P(d \mid a, b)}(a, b)
$$

- Eliminating \boldsymbol{x}, we get

$$
f_{P(v)} f_{P(s)} f_{P(t \mid v)}(t) f_{P(| | s)}(/) f_{P(b \mid s)}(b) P(a \mid t, l) f_{X}(a) f_{P(d \mid a, b)}(a, b)
$$

- Eliminating t, we get

$$
f_{P(v)} f_{P(s)} f_{P(| | s)}(/) f_{P(b \mid s)}(b) f_{f}(a, /) f_{X}(a) f_{P(d \mid a, b)}(a, b)
$$

Dealing with evidenev

- Given evidence $V=t, S=f, D=t$
- Compute $P(L, V=t, S=f, D=t)$
- Initial factors, after setting evidence:

$$
f_{P(v)} f_{P(s)} f_{P(t \mid v)}(t) f_{P(/ \mid s)}(/) f_{P(b \mid s)}(b) P(a \mid t, /) P(x \mid a) f_{P(d \mid a, b)}(a, b)
$$

- Eliminating X, we get

$$
f_{P(v)} f_{P(s)} f_{P(t \mid v)}(t) f_{P(| | s)}(/) f_{P(b \mid s)}(b) P(a \mid t, l) f_{X}(a) f_{P(d \mid a, b)}(a, b)
$$

- Eliminating t, we get

$$
f_{P(v)} f_{P(s)} f_{P(| | s)}(/) f_{P(b \mid s)}(b) f_{+}(a, /) f_{x}(a) f_{P(d \mid a, b)}(a, b)
$$

- Eliminating a, we get

$$
f_{P(v)} f_{P(s)} f_{P(| | s)}(/) f_{P(b \mid s)}(b) f_{a}(b, /)
$$

Dealing with evidenceeb

- Given evidence $V=t, S=f, D=t$
- Compute $P(L, V=t, S=f, D=t)$
- Initial factors, after setting evidence:

$$
f_{P(v)} f_{P_{P(s)}} f_{P(t \mid v)}(t) f_{P(| | s)}(/) f_{P(b \mid s)}(b) P(a \mid t, /) P(x \mid a) f_{P(d \mid a, b)}(a, b)
$$

- Eliminating \boldsymbol{x}, we get

$$
f_{P(v)} f_{P(s)} f_{P(t \mid v)}(t) f_{P(| | s)}(/) f_{P(b \mid s)}(b) P(a \mid t, l) f_{X}(a) f_{P(d \mid a, b)}(a, b)
$$

- Eliminating \boldsymbol{t}, we get

$$
f_{P(v)} f_{P(s)} f_{P(| | s)}(/) f_{P(b \mid s)}(b) f_{t}(a, \prime, \prime) f_{x}(a) f_{P(d \mid a, b)}(a, b)
$$

- Eliminating a, we get

$$
f_{\rho_{(v)}} f_{\rho(s)} f_{P(I))}(/) f_{P(b \mid s)}(b) f_{a}(b, /)
$$

- Eliminating b, we get
$f_{P(v)} f_{P(s)} f_{P(\mid s)}(/) f_{b}(/)$

Variable elimination algorithm

- Let X_{1}, \ldots, X_{m} be an ordering on the non-query variables
- For $\mathrm{i}=\mathrm{m}, \ldots, 1 \sum_{\mathrm{X}_{1}} \sum_{\mathrm{X}_{2}} \ldots \sum_{\mathrm{X}_{\mathrm{m}}} \prod_{\mathrm{j}} \mathrm{P}\left(\mathrm{X}_{\mathrm{j}} \mid \operatorname{Parents} \quad\left(\mathrm{X}_{\mathrm{j}}\right)\right)$
- Leave in the summation for X_{i} only factors mentioning X_{i}
- Multiply the factors, getting a factor that contains a number for each value of the variables mentioned, including X_{i}
- Sum out X_{i}, getting a factor f that contains a number for each value of the variables mentioned, not including X_{i}
- Replace the multiplied factor in the summation

Complexity of variable elimination

Suppose in one elimination step we compute

$$
\begin{aligned}
& f_{x}\left(y_{1}, \ldots, y_{k}\right)=\sum_{x} f_{x}^{\prime}\left(x, y_{1}, \ldots, y_{k}\right) \\
& f_{x}^{\prime}\left(x, y_{1}, \ldots, y_{k}\right)=\prod_{i=1}^{m} f_{i}\left(x, y_{1,1}, \ldots, y_{1, l,}\right)
\end{aligned}
$$

$$
m \cdot|\operatorname{Val}(X)| \cdot \prod_{i}\left|\operatorname{Val}\left(Y_{i}\right)\right|
$$

multiplications (for each value for x, y_{1}, \ldots, y_{k} we do m multiplications) and

$$
|\operatorname{Val}(X)| \cdot \prod_{i}\left|\operatorname{Val}\left(y_{i}\right)\right|
$$

additions (for each value of y_{1}, \ldots, y_{k}, we do $/ \operatorname{Val}(X) /$ additions)
-Complexity is exponential in the number of variables in the intermediate factors
-Finding an optimal ordering is NP-hard

Exercise: Variable elimination

Conditioning

- Conditioning: Find the network's smallest cutset S (a set of nodes whose removal renders the network singly connected)
- In this network, $\mathrm{S}=\{\mathrm{A}\}$ or $\{\mathrm{B}\}$ or $\{\mathrm{C}\}$ or $\{\mathrm{D}\}$
- For each instantiation of S, compute the belief update with the polytree algorithm
- Combine the results from all instantiations of S
- Computationally expensive (finding the smallest cutset is in general NPhard, and the total number of possible instantiations of S is $\mathrm{O}\left(2^{|\mathrm{S}|}\right)$)

Approximate Inference

Approaches to inference

- Exact inference
- Enumeration
- Variable elimination
- Clustering / join tree algorithms
- Approximate inference
- Stochastic simulation / sampling methods
- Markov chain Monte Carlo methods

Approximate inference: Direct sampling

- Generates events from a network that has no evidence associated with it
- Randomly generate a very large number of instantiations from the BN
- Generate instantiations for all variables - start at root variables and work your way "forward" in topological order
- Probability distribution conditioned on values assigned to parents
- Use the frequency of values for Z to get estimated probabilities
- Accuracy of the results depends on the size of the sample (asymptotically approaches exact results)

Direct sampling algorithm

```
function PRIOR-SAMPLE (bn) returns an event sampled from the prior specified by bn
    inputs: bn, a Bayesian network specifying joint distribution }\mathbf{P}(\mp@subsup{X}{1}{},\ldots,\mp@subsup{X}{n}{}
    x}\leftarrowa\mathrm{ an event with }n\mathrm{ elements
    foreach variable }\mp@subsup{X}{i}{}\mathrm{ in }\mp@subsup{X}{1}{},\ldots,\mp@subsup{X}{n}{}\mathrm{ do
        x[i]\leftarrowa random sample from }\mathbf{P}(\mp@subsup{X}{i}{}|\mathrm{ parents }(\mp@subsup{X}{i}{})
    return x
```


Direct sampling example

- Sample from $\mathrm{P}($ Cloudy $)=<0.5,0.5>$, value is true
- Sample from $\mathrm{P}($ Sprinklerlcloudy $)=<0.1,0.9>$, value is false
- Sample from P (Rainlcloudy) $=<0.8,0.2>$, value is true
- Sample from P(WetGrassl~sprinkler, rain) $=<0.9,0.1>$, value is true
- [true, false, true, true]

Approximate inference: Rejection sampling

- Suppose you are given values for some subset of the variables, E , and want to infer values for unknown variables, Z
- Used to compute conditional probabilities, i.e. P(XIe)
- Randomly generate a very large number of instantiations from the BN
- Generate instantiations for all variables
- Rejection sampling: Only keep those instantiations that are consistent with the values for E
- Use the frequency of values for Z to get estimated probabilities
- Accuracy of the results depends on the size of the sample (asymptotically approaches exact results)

Rejection sampling example

- Query P(Rainlsprinkler), using 100 samples
- Out of the 100, 73 have Sprinkler=false
- We reject them
- From the 27 left, 8 have Rain=true
$-\mathrm{P}($ RainlSprinkler $)=<0.296,0.704>$

Likelihood weighting

- Idea: Don't generate samples that need to be rejected in the first place!
- Sample only from the unknown variables Z
- Weight each sample according to the likelihood that it would occur, given the evidence E

Markov Chain Monte Carlo algorithm

- So called because
- Markov chain - each instance generated in the sample is dependent on the previous instance
- Monte Carlo - statistical sampling method
- Works different from rejection sample and likelihood weighting
- MCMC generates each sample by making a random change to the preceding example
- Current state: a value for every variable
- Next state: Make random changes to the current state

Markov chain Monte Carlo algorithm

- So called because
- Markov chain - each instance generated in the sample is dependent on the previous instance
- Monte Carlo - statistical sampling method
- Perform a random walk through variable assignment space, collecting statistics as you go
- Start with a random instantiation, consistent with evidence variables
- At each step, for some nonevidence variable, randomly sample its value, consistent with the other current assignments
- Given enough samples, MCMC gives an accurate estimate of the true distribution of values

Gibbs sampling

- A particular form of MCMC
- Start with a random instantiation, consistent with evidence variables
- Generate next state by randomly sample a value for some nonevidence variable X
- The sampling for X is done conditioned on the current values of the variables in the Markov blanket of X
- Wanders randomly around the space of possible complete assignments, flipping one variable at a time, but keeping the evidence variables fixed

(from slide 13) Topological semantics

- A node is conditionally independent of its non-descendants given its parents
- A node is conditionally independent of all other nodes in the network given its parents, children, and children's parents (also known as its Markov blanket)

MCMC Gibbs sampling example

- Query P(Rainlsprinkler, wetgrass)
- Initial state [true, true, false, true]
- Cloudy is sampled P (Cloudylsprinkler, \sim rain $)$
- Suppose result is Cloudy=false
- New state is [false, true, false, true]
- Rain is sampled P(Rainl~cloudy, sprinkler, wetgrass)
- Suppose result is Rain=true
- Continue sampling, and normalize frequencies to get restl 1

Exercise: MCMC sampling

Summary

- Bayes nets
- Structure
- Parameters
- Conditional independence
- Chaining
- BN inference
- Enumeration
- Variable elimination
- Sampling methods

Summary

- Bayesian Networks
- Independence and conditional independence among variables can greatly reduce the full joint distribution
- Bayesian Networks
- A structure used to represent the dependencies among variables

Summary

- Conditional Independence and Chaining
- With this assumption, the complete joint probability distribution of all variables in the network can be represented by (recovered from) local CPDs by chaining these CPDs

Summary

- Inference tasks
- Simple queries: Compute posterior distribution $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{E}=\mathrm{e}\right)$
- E.g., P(NoGas I Gauge=empty, Lights=on, Starts=false)
- P(Burglary | JohnCalls=true, MaryCalls=true) $=<0.284,0.716>$
- Conjunctive queries:
$-P\left(X_{i}, X_{j} \mid E=e\right)=P\left(X_{i} \mid e=e\right) P\left(X_{j} \mid X_{i}, E=e\right)$
- Exact inference
- Enumeration
- Variable elimination
- Clustering / join tree algorithms
- Approximate inference
- Stochastic simulation / sampling methods
- Markov chain Monte Carlo methods

