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Sources of uncertainty

• Uncertain inputs
– Missing data
– Noisy data

• Uncertain knowledge
– Multiple causes lead to multiple effects
– Incomplete enumeration of conditions or effects
– Incomplete knowledge of causality in the domain
– Probabilistic/stochastic effects

• Uncertain outputs
– Abduction and induction are inherently uncertain
– Default reasoning, even in deductive fashion, is uncertain
– Incomplete deductive inference may be uncertain

�Probabilistic reasoning only gives probabilistic 
results (summarizes uncertainty from various sources)



Uncertainty and Artificial Intelligence

From the Slides on Probabilistic Models by Sam Roweis



Uncertainty and Artificial Intelligence
Decision making with uncertainty

From the Slides on Probabilistic Models by Sam Roweis
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Decision making with uncertainty

• Rational behavior:

– For each possible action, identify the possible outcomes

– Compute the probability of each outcome

– Compute the utility of each outcome

– Compute the probability-weighted (expected) utility

over possible outcomes for each action

– Select the action with the highest expected utility 

(principle of Maximum Expected Utility)
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Bayesian Reasoning

• Probability theory

• Probabilistic approach to inference

• Bayesian inference

– Use probability theory and information about independence 

– Reason diagnostically (from evidence (effects) to conclusions 
(causes)) or causally (from causes to effects)

• Bayesian networks
– Compact representation of probability distribution over a set of

propositional random variables

– Take advantage of independence relationships



8

Other Uncertainty Representations

• Default reasoning
– Nonmonotonic logic: Allow the retraction of default beliefs if they 

prove to be false

• Rule-based methods
– Certainty factors (Mycin): propagate simple models of belief 

through causal or diagnostic rules

• Evidential reasoning

– Dempster-Shafer theory: Bel(P) is a measure of the evidence for P; 
Bel(¬P) is a measure of the evidence against P; together they define 
a belief interval (lower and upper bounds on confidence)

• Fuzzy reasoning
– Fuzzy sets: How well does an object satisfy a vague property?

– Fuzzy logic: “How true” is a logical statement?
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Abduction

• Abduction is a reasoning process that tries to form plausible 

explanations for abnormal observations

– Abduction is distinctly different from deduction and 

induction

– Abduction is inherently uncertain

• Uncertainty is an important issue in abductive reasoning
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Abduction examples

– Medical diagnosis

• Facts: symptoms, lab test results, and other observed findings 

(called manifestations)

• KB: causal associations between diseases and manifestations

• Reasoning: one or more diseases whose presence would 

causally explain the occurrence of the given manifestations

– Many other reasoning processes (e.g., word sense disambiguation in 

natural language process, image understanding, criminal investigation) 

can also been seen as abductive reasoning
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Abduction

• “Conclusions” are hypotheses, not theorems (may be 

false even if rules and facts are true) 
– E.g., misdiagnosis in medicine

• There may be multiple plausible hypotheses
– Given rules A => B and C => B, and fact B, both A and C 

are plausible hypotheses 

– Hypotheses can be ranked by their plausibility (if it can be 

determined)
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Abductive Reasoning

• Reasoning is non-monotonic

– The plausibility of hypotheses can increase/decrease as 

new facts are collected 

– In contrast, deductive inference is monotonic: it never 

change a sentence’s truth value, once known

– In abductive (and inductive) reasoning, some 

hypotheses may be discarded, and new ones formed, 

when new observations are made
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Comparing Abduction, Deduction,

and Induction

Deduction: major premise:      All balls in the box are black

minor premise:      These balls are from the box

conclusion:            These balls are black

Abduction: rule:                       All balls in the box are black

observation:           These balls are black

explanation:  These balls are from the box

Induction: case:                       These balls are from the box

observation:           These balls are black

hypothesized rule:  All ball in the box are black

A => B  
A 
---------
B

A => B  
B

-------------
Possibly A

Whenever 
A then B
-------------
Possibly 
A => B

Deduction reasons from causes to effects

Abduction reasons from effects to causes

Induction reasons from specific cases to general rules
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Uncertainty Tradeoffs

• Bayesian networks: Nice theoretical properties combined with efficient 

reasoning make BNs very popular; limited expressiveness, knowledge 

engineering challenges may limit uses. Also, they require initial 

knowledge of many probabilities.

• Nonmonotonic logic: Represent commonsense reasoning, but can be 

computationally very expensive

• Certainty factors: Not semantically well founded

• Dempster-Shafer theory: Has nice formal properties, but can be 

computationally expensive, and intervals tend to grow towards [0,1] 

(not a very useful conclusion)

• Fuzzy reasoning: Semantics are unclear (fuzzy!), but has proved very 

useful for commercial applications



Ontology and epistemology

• Ontological commitment – what the language assumes about 

the nature of reality

• Epistemological commitment – the possible states of 

knowledge
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Quantifying uncertaintyQuantifying uncertainty

Chapter 13



Why probabilities anyway?

• Kolmogorov showed that three simple axioms lead to the rules of 

probability theory

– De Finetti, Cox, and Carnap have also provided compelling arguments for 

these axioms

1. All probabilities are between 0 and 1:

• 0 ≤ P(a) ≤ 1

2. Valid propositions (tautologies) have probability 1, and unsatisfiable

propositions have probability 0:

• P(true) = 1 ; P(false) = 0

3. The probability of a disjunction is given by:

• P(a ∨ b) = P(a) + P(b) – P(a ∧ b)

If a and b are disjoint, then

P(a ∨ b) = P(a) + P(b) a∧ba b

a b



Probabilities

– The probability that the patient has a cavity, given that she has 

toothache, is 0.8

– Does the patient have a cavity or not?

• The patient either has a cavity or doesn’t

• The patient does not have 0.8 cavity

• Probabilities statements are made with respect to a 

knowledge state not with respect to the real world

• Similar case for probabilistic predictions

– This pneumonia patient has a 93% chance of complete recovery

• The patient either recovers or doesn’t



Example: disjoint events

• Consider a deck of 52 cards. 

• The event A that I will draw a spade and the event B that I 

will draw a king are clearly not disjoint events.

• Their intersection specifies the event that I will draw the 

king of spades, A ∧ B = {king of spades}. 

• Thus, the probability that I will draw either a king or a 

spade is:



More probabilities

• Probability distribution

– P(Weather = sunny) = 0.6 P(sunny) = 0.6

– P(Weather = rain) = 0.1 P(rain) = 0.1

– P(Weather = cloudy) = 0.29 P(cloudy) = 0.29

– P(Weather = snow) = 0.01 P(snow) =0.01

• PDFs (probability density functions) for continuous 

variables

– P(NoonTemp=x) = Uniform[18C,26C](x)
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Joint Probabilities

• What does P(Alarm, Burglary) mean?



• In addition to distributions on single variables, we need 

notation for distributions on multiple variables

• Joint Probability Distribution

– P(Alarm, Burglary) denotes the probabilities of all the combinations 

of the values of Alarm and Burglary

– P(alarm=false, Burglary) 

Joint Probabilities



Full Joint Probability Distribution

• P(Cavity, Toothache, Weather)
– 2 x 2 x4 table (16 entries)

• Every proposition probability is a sum over possible worlds

• A full joint distribution suffices for calculating the 
probability of any proposition

• Notation:

– P(X = x) is the probability that random variable X takes on value x

– P(X) is the distribution of probabilities for all possible values of X
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Probability theory

• Random variables

– Domain

• Atomic event: complete 

specification of state

• Prior probability: degree 

of belief without any other 

evidence

• Joint probability 

distribution: matrix of 

combined probabilities of a 

set of variables

• Alarm, Burglary, Earthquake

– Boolean (like these), discrete, 

continuous

• Alarm=True ∧ Burglary=True ∧

Earthquake=False

alarm ∧ burglary ∧ ¬earthquake

• P(burglary) = .1

• P(Alarm, Burglary) =

alarm ¬alarm

burglary .09 .01

¬burglary .1 .8



Conditional Probabilities

• Unconditional or prior probabilities

– Degree of belief in the absence of any other information

• P(burglary) = 0.1

• P(cavity) = 0.2

• P(doubles) = 6/36 = 1/6

• P(double-five) = 1/36

• Conditional or Posterior Probability

– Most of the time, we have some information, usually called evidence 

that has already been revealed

– The probability of some event A, given the occurrence of some other 

event B

• P(cavity | tootache) 

• P(burglary | alarm)

• P(doubles | Die1 = 5)



Computing Conditional Probabilities 

(1)

P(a | b) = P(a ∧ b) / P(b)

• Conditional or Posterior Probability

– Most of the time, we have some information, usually called evidence 

that has already been revealed

– The probability of some event A, given the occurrence of some other 

event B

• P(doubles | Die1 = 5) = 

= P(doubles ∧ Die1=5) / P(Die1=5)

= (1/36) / (1/6) = 1/6

• Product rule

– P(a ∧ b) = P(a | b) P(b)



• Conditional probability: 

probability of effect given causes

• Computing conditional probs:

– P(a | b) = P(a ∧ b) / P(b)

– P(b): normalizing constant

• Product rule:

– P(a ∧ b) = P(a | b) P(b)

• Marginalizing:

– P(B) = ΣaP(B, a)

– P(B) = ΣaP(B | a) P(a) 

(conditioning)

• P(burglary | alarm) = 

P(alarm | burglary) =

• P(burglary | alarm) =

P(burglary ∧ alarm) / P(alarm)

=

• P(burglary ∧ alarm) = 

P(burglary | alarm) P(alarm) =

• P(alarm) =

P(alarm ∧ burglary) +

P(alarm ∧ ¬burglary) =

P(Alarm, Burglary) =

alarm ¬alarm

burglary .09 .01

¬burglary .1 .8

Computing Conditional Probabilities 

(2)



• Conditional probability: 

probability of effect given causes

• Computing conditional probs:

– P(a | b) = P(a ∧ b) / P(b)

– P(b): normalizing constant

• Product rule:

– P(a ∧ b) = P(a | b) P(b)

• Marginalizing or Summing out:

– P(B) = ΣaP(B, a)

– P(B) = ΣaP(B | a) P(a) 

(conditioning)

• P(burglary | alarm) = .47

P(alarm | burglary) = .9

• P(burglary | alarm) =

P(burglary ∧ alarm) / P(alarm)

= .09 / .19 = .47

• P(burglary ∧ alarm) = 

P(burglary | alarm) P(alarm) =

.47 * .19 = .09

• P(alarm) =

P(alarm ∧ burglary) +

P(alarm ∧ ¬burglary) =

.09+.1 = .19

Computing Conditional Probabilities 

(3)

P(Alarm, Burglary) =

alarm ¬alarm

burglary .09 .01

¬burglary .1 .8



Inference from the Joint

• Simple method for probabilistic inference

• Computation of posterior probabilities for queries 

given the observed evidence and the full joint 

distribution

• A full joint distribution suffices for calculating the 

probability of any proposition

alarm ¬alarm

burglary .09 .01

¬burglary .1 .8

Observed: alarm

Query: P(burglary | alarm)

P(Alarm, Burglary)



30

Example: Inference from the joint

alarm ¬alarm

earthquake ¬earthquake earthquake ¬earthquake

burglary .01 .08 .001 .009

¬burglary .01 .09 .01 .79

P(burglary | alarm) = 

P(¬burglary | alarm) =
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Example: Inference from the joint

alarm ¬alarm

earthquake ¬earthquake earthquake ¬earthquake

burglary .01 .08 .001 .009

¬burglary .01 .09 .01 .79

P(burglary | alarm) = .09 / .19

= .474

P(¬burglary | alarm) = .1 / .19

= .526
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Example: Inference from the joint

alarm ¬alarm

earthquake ¬earthquake earthquake ¬earthquake

burglary .01 .08 .001 .009

¬burglary .01 .09 .01 .79

P(burglary | alarm) = .09 / .19
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Example: Inference from the joint

alarm ¬alarm

earthquake ¬earthquake earthquake ¬earthquake

burglary .01 .08 .001 .009

¬burglary .01 .09 .01 .79

P(burglary | alarm) =.474

P(¬burglary | alarm) = .526

P(Burglary | alarm) = α P(Burglary, alarm)

= α [P(Burglary, alarm, earthquake) + P(Burglary, alarm, ¬earthquake)]

= α [ (.01, .01) + (.08, .09) ]

= α [ (.09, .1) ]

= <.474, .526>α = 1/(.09+.1) = 5.26 (since Since P(burglary | alarm) + P(¬burglary | alarm) = 1)
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Exercise: Inference from the joint

• Queries:

– What is the prior probability of smart?

– What is the prior probability of study?

– What is the conditional probability of prepared, given 
study and smart?

• Save these answers for next time! ☺

p(smart ∧∧∧∧

study ∧∧∧∧ prep)

smart ¬¬¬¬smart

study ¬¬¬¬study study ¬¬¬¬study

prepared .432 .16 .084 .008

¬¬¬¬prepared .048 .16 .036 .072
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Inference Using Full Joint 

Distributions

• A full joint distribution suffices for calculating the 
probability of any proposition

• Full joint distribution is not practical for building reasoning 
systems
– Suppose we have a joint distribution P(X1, X2, …, Xn) of n random 

variables with domain sizes d

– What is the size of the probability table?

– Impossible to write out completely for all but the smallest 
distributions

• What can be done?
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Independence

• When two sets of propositions do not affect each 

others’ probabilities, we call them independent, 

and can easily compute their joint and conditional 

probability:

Independent (A, B)  → P(A ∧∧∧∧ B) = P(A) P(B),  P(A | B) = P(A)



Back in slide 23 …

• P(Cavity, Toothache, Weather)

– 2 x 2 x4 table (16 entries)

• Dental problems do not affect the weather

• The weather does not influence dental variables

• P(sunny | tootache, cavity) = P(sunny)

• P(tootache, cavity, sunny) = P(sunny) P(tootache, cavity)

Independent (A, B)  → P(A ∧∧∧∧ B) = P(A) P(B),  P(A | B) = P(A)



Independence Example

• Independence assertions are usually based on knowledge of 

the domain

• They can dramatically reduce the amount of information 

necessary to specify the full joint distribution
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Independence Example 2

• {moon-phase, light-level} might be independent of 

{burglary, alarm, earthquake}

– Then again, it might not:  Burglars might be more likely to 

burglarize houses when there’s a new moon (and hence little light)

– But if we know the light level, the moon phase doesn’t affect 

whether we are burglarized

– Once we’re burglarized, light level doesn’t affect whether the alarm 

goes off

• We need a more complex notion of independence, and 

methods for reasoning about these kinds of relationships

– Absolute Independence vs Conditional Independence
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Exercise: Independence

• Queries:

– Is smart independent of study?

– Is prepared independent of study?

p(smart ∧∧∧∧

study ∧∧∧∧ prep)

smart ¬¬¬¬smart

study ¬¬¬¬study study ¬¬¬¬study

prepared .432 .16 .084 .008

¬¬¬¬prepared .048 .16 .036 .072
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Exercise: Conditional independence

• Queries:

– Is smart conditionally independent of prepared, given 
study?

– Is study conditionally independent of prepared, given 
smart?

p(smart ∧∧∧∧

study ∧∧∧∧ prep)

smart ¬¬¬¬smart

study ¬¬¬¬study study ¬¬¬¬study

prepared .432 .16 .084 .008

¬¬¬¬prepared .048 .16 .036 .072
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Conditional independence

• Absolute independence:

– A and B are independent if P(A ∧ B) = P(A) P(B); equivalently, 
P(A) = P(A | B) and P(B)  = P(B | A)

• A and B are conditionally independent given C if

– P(A ∧ B | C) = P(A | C) P(B | C)

• This lets us decompose the joint distribution:

– P(A ∧ B ∧ C) = P(A | C) P(B | C) P(C)

• Moon-Phase and Burglary are conditionally independent 
given Light-Level

• Conditional independence is weaker than absolute 
independence, but still useful in decomposing the full joint 
probability distribution
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Bayes’s rule

• Bayes’s rule is derived from the product rule (slide 26):

– P(a ∧ b) = P(a | b) P(b) P(a ∧ b) = P(b | a) P(a)

• We also had a formula for computing probabilities (slide 26):

– P(a | b) = P(a ∧ b) / P(b)

• Using the product rule, we derive:

• Often useful for diagnosis: 

– If X are (observed) effects and Y are (hidden) causes, 

– We may have a model for how causes lead to effects (P(X | Y))

– We may also have prior beliefs (based on experience) about the frequency of 

occurrence of effects (P(Y))

– Which allows us to reason from effects to causes (P(Y | X))  (diagnosis)

Baye’s Rule
)(

)()|(
)|(

XP

YPYXP
XYP =

)(

)()|(
)|(

aP

bPbaP
abP =
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Bayes’s rule
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Bayesian inference

• In the setting of diagnostic/evidential reasoning

– Known prior probability of hypothesis

conditional probability 

– Want to compute the posterior probability

• Bayes’ theorem (formula 1):

)( iHP

)|( ij HEP

onsanifestatievidence/m                                      

hypotheses                                             

21 m

i

EEE
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)|( ij HEP

)|( ji EHP

)(

)()|(
)|(

j

iij

ji
EP

HPHEP
EHP =
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Simple Bayesian diagnostic reasoning

• Knowledge base:

– Evidence / manifestations: E1, … Em

– Hypotheses / disorders: H1, … Hn

• Ej and Hi are binary; hypotheses are mutually exclusive (non-

overlapping) and exhaustive (cover all possible cases)

– Conditional probabilities: P(Ej | Hi), i = 1, … n; j = 1, … m

• Cases (evidence for a particular instance): E1, …, El

• Goal: Find the hypothesis Hi with the highest posterior 

(i.e. the MAP hypothesis)

– Maxi P(Hi | E1, …, El)
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Bayesian diagnostic reasoning II

• Bayes’ rule says that

– P(Hi | E1, …, El) = P(E1, …, El | Hi) P(Hi) / P(E1, …, El)

• Assume each piece of evidence Ei is conditionally 

independent of the others, given a hypothesis Hi, then:

– P(E1, …, El | Hi) = ∏l
j=1 P(Ej | Hi)

• The full joint distribution can be written as:

– P(Hi | E1, …, El) = α P(Hi) ∏
l
j=1 P(Ej | Hi)

• Such a probability distribution is known as Naïve bayes

model



Naïve Bayes

P(Cause | Effect1, …, Effectn) = P(Cause) ∏i P(Effecti | Cause)

• Often used in cases where the “effect” variables are not 

actually conditionally independent given the cause variable, 

and so the name naïve (a simplifying assumption).

• Works surprisingly well in practice (even if the conditional 

independence assumption does not hold).

– Naïve Bayes classifiers have shown comparable performance to 

neural networks and decision tree classifiers.

• Classifying natural language text documents



Naïve Bayes Model Example: Spam 

Filtering

http://www.cs.unc.edu/~lazebnik/fall10



Naïve Bayes Model Example: Spam 

Filtering

http://www.cs.unc.edu/~lazebnik/fall10



Naïve Bayes Model Example: Spam 

Filtering

http://www.cs.unc.edu/~lazebnik/fall10
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Limitations of simple 

Bayesian inference

• Cannot easily handle multi-fault situation, nor cases where 

intermediate (hidden) causes exist:

– Disease D causes syndrome S, which causes correlated 

manifestations M1 and M2

• Consider a composite hypothesis H1 ∧ H2, where H1 and H2

are independent. What is the relative posterior?

– P(H1 ∧ H2 | E1, …, El) = α P(E1, …, El | H1 ∧ H2) P(H1 ∧ H2)

= α P(E1, …, El | H1 ∧ H2) P(H1) P(H2)

= α ∏l
j=1 P(Ej | H1 ∧ H2) P(H1) P(H2)

• How do we compute P(Ej | H1 ∧ H2) ??
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Limitations of simple Bayesian 

inference II

• Assume H1 and H2 are independent, given E1, …, El?

– P(H1 ∧ H2 | E1, …, El) = P(H1 | E1, …, El) P(H2 | E1, …, El)

• This is a very unreasonable assumption

– Earthquake and Burglar are independent, but not given Alarm:

• P(burglar | alarm, earthquake) << P(burglar | alarm)

• Another limitation is that simple application of Bayes’s rule doesn’t 

allow us to handle causal chaining:

– A: this year’s weather; B: cotton production; C: next year’s cotton price

– A influences C indirectly:  A→ B → C

– P(C | B, A) = P(C | B)

• Need a richer representation to model interacting hypotheses, 

conditional independence, and causal chaining

• Next time: conditional independence and Bayesian networks


