Description Logics
Ontologies in OWL
Semantic Web

Prof. Laura Zavala, laura.zavala@umbc.edu, ITE 373, 410-455-8775

Some content on the slides has been taken from the tutorials at
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/
Ontologies

- Specification of a conceptualization
- Representations of concepts
- Explicit formal specifications of the terms in the domain and relations among them
- Usually represented as a type hierarchy

Diagram:

```
+-----------------+     +-----------------+
| Vehicle         |     | Car             |
|                 |     | Truck           |
|                 +-----+ 2-wheel + 4-wheel |
```

Vehicle

Car

Truck

2-wheel

4-wheel
Why do we need an ontology

- To share common understanding of the structure of information among people or software agents
- To enable reuse of domain knowledge
- To make domain assumptions explicit
- To separate domain knowledge from the operational knowledge
 - We can merge, extend, and change
- To analyze domain knowledge
Description Logics

- Describe definitions and properties of categories
- Current systems take care to keep the languages simple, so that all inference can be done in polynomial time (in the number of objects)
 - ensuring tractability of inference
Description Logics (2)

- More expressive than propositional logic
- More efficient decision problems than first order predicate logic

- DL are of particular importance in providing a logical formalism for Ontologies and the Semantic Web
The Semantic Web: Means Many Things to Many People
What is the Semantic Web?

The **Semantic Web** is an evolving extension of the World Wide Web in which web content can be expressed not only in natural language, but also in a form that can be understood, interpreted and used by software agents, thus permitting them to find, share and integrate information more easily.

It derives from W3C director Tim Berners-Lee's vision of the Web as a universal medium for data, information, and knowledge exchange.
A group of methods and technologies to allow machines to understand the meaning - or "semantics" - of information on the World Wide Web

- Resource Description Framework (RDF)
 - ABox
 - Triple Stores
 - Allegro, OntoBroker, Sesame, Virtuoso, RDFBroker, Jena, …
- SPARQL is a protocol and query language for semantic web data sources (in RDF)
- Ontologies
 - Web Ontology Language (OWL), RDFs, …
 - TBox
- Rule Engines or Systems (Forward Chaining and Backward Chaining)
 - Pellet, Jena, Fact, Fact++, SwetRules, Jess, RuleML, …
The Layer Cake of the Semantic Web
<owl:Ontology>
 ...
 <owl:Class rdf:id="Italian">
 <owl:unionOf rdf:parseType="owl:collection">
 <owl:Class rdf:resource="#Lazy"/>
 <owl:Class rdf:resource="#Mafioso"/>
 <owl:Class rdf:resource="#LatinLover"/>
 </owl:unionOf>
 ...
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasName"/>
 <owl:minCardinality>
 <rdf:datatype="&xsd:#nonNegativeInteger">1</rdf:datatype>
 </owl:minCardinality>
 ...
 <owl:Class rdf:id="LatinLover">
 <rdfs:subClassOf rdf:resource="#Italian"/>
 <owl:disjointWith rdf:resource="#Lazy"/>
 <owl:disjointWith rdf:resource="#Mafioso"/>
 </owl:Class>
 ...
 <owl:ObjectProperty rdf:id="hasName">
 <rdfs:domain rdf:resource="#Italian"/>
 <rdfs:range rdf:resource="#Name"/>
 </owl:ObjectProperty>
 ...
 </owl:Class>
 ...
</owl:Ontology>
Ontologies in OWL are not trees, they are graphs.

- They are not only a hierarchy of classes
- They represent objects and relations about those objects (which includes subsumption relations, i.e. subclasses)

```xml
<owl:Class rdf:about="#Food"/>

<owl:Class rdf:about="#Pizza">
  <rdfs:subClassOf rdf:resource="#Food"/>
</owl:Class>

<owl:ObjectProperty rdf:about="#hasBase">
  <rdf:type rdf:resource="&owl;FunctionalProperty"/>
  <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>
  <rdfs:domain rdf:resource="#Pizza"/>
  <rdfs:range rdf:resource="#PizzaBase"/>
  <rdfs:subPropertyOf rdf:resource="#hasIngredient"/>
  <owl:inverseOf rdf:resource="#isBaseOf"/>
</owl:ObjectProperty>
```

...
RDF & RDFS

- **RDF (Resource Description Framework)**
 - A triple model where every assertion is decomposed in three parts: (subject, predicate, object) for instance (tutorial.php, author, "Fabien").
 - The subject is a URI identifying a resource. The predicate is a binary relation identified by a URI. The object is either a URI identifying a resource or a literal value.
 - Each triple can be seen as a labeled arc and joining these arcs one obtains a graph that describes URI-identified resources and their relations.

- **RDFS (RDF Schema)**
 - RDFS is a set of primitives to describe **lightweight ontologies**
 - RDFS allows us to:
 - name and declare a vocabulary (name resource types and binary relation types called properties);
 - specify the signature of properties (type of the domain i.e. type of the subject and type of the range i.e. type of the object);
 - specify the (multiple)-inheritance links between the types of classes (subClassOf);
 - specify the (multiple)-inheritance links between the types of properties (subPropertyOf);
(How to think about RDF)
SPARQL

(An RDF Query Language)

- Specifies queries over an RDF triple store
- Schema for the triple store (e.g. the Genealogy Core, gc)
- Example: get names and, if available, gender and birthdate of people born in the 1880’s.

```sparql
SELECT ?Name ?Gender ?BirthDate
  OPTIONAL { ?IndividualURI gc:gender ?Gender ;
  FILTER REGEX(?BirthDate, "188\d") }  
```
The dbpedia knowledge base

- DBpedia is a community effort to extract structured information from Wikipedia and to make this information available on the Web. DBpedia allows you to ask sophisticated queries against Wikipedia, and to link other data sets on the Web to Wikipedia data.
The dbpedia knowledge base
Dbpedia: knowledge extracted from Wikipedia Infoboxes
The dbpedia knowledge base

- The DBpedia data set uses a large multi-domain ontology which has been derived from Wikipedia.
- The DBpedia data set currently describes 3.4 million “things” with over 1 billion “facts” (March 2010).
Querying dbpedia

- **SPARQL**
- **Example queries**
 - All soccer players, who played as goalkeeper for a club that has a stadium with more than 40,000 seats and who are born in a country with more than 10 million inhabitants
 - People who were born in Berlin before 1900
 - German musicians with German and English descriptions
 - German musicians who were born in Berlin
 - French films
 - First-person shooter computer games
 - Luxury cars
- http://wiki.dbpedia.org/OnlineAccess
Querying dbpedia

- You write your queries and try them at some public endpoint
 - http://DBpedia.org/sparql
 - http://DBpedia.org/snorql
- You can use some SPARQL query builder, e.g. http://querybuilder.dbpedia.org/
Querying dbpedia

- French Films

```sql
SELECT ?film
WHERE
{
}
```
Other semantic data initiatives

- Freebase
- GeoNames
- Data.gov
 - An Official Web Site of the United States Government
 - Is now hosting one of the largest open collections of RDF datasets in the world!
OWL: Web Ontology Language

- Part of the W3C Semantic Web Framework
- Explicit semantics for reasoning about systems of categories.
- Open World
- Different Flavours
 - Lite, DL, Full
 - EL, QL, RL
- Several Common Representations (syntax)
 - XML, N3, Abstract Syntax
OWL and RDF

- Resource Description Framework (RDF)
 - Describes a graph of nodes and arcs, each normally identified by a URI
 - RDF statements are triples
 - subject → predicate → object
 - Myhouse → isLocatedIn → Maryland
 - Maryland → isA → State
 - Semantics are limited and use is unconstrained compared to OWL
OWL and RDFS

- RDF Schema (RDFS)
 - Adds the notion of classes to RDF
 - Allows hierarchies of classes and properties
 - OWL has the same interpretation of some RDFS statements (subsumption, domain, and range)
OWL RDF/XML Syntax

- Several Common Representations (syntax)
 - XML, N3, Abstract Syntax

```xml
<owl:Class rdf:ID="SpicyPizza">
    <rdfs:label xml:lang="pt">Pizza Temperada</rdfs:label>
    <rdfs:comment xml:lang="en">Any pizza that has a spicy topping is a SpicyPizza</rdfs:comment>
    <owl:equivalentClass>
        <owl:Class>
            <owl:intersectionOf rdf:parseType="Collection">
                <owl:Class rdf:about="#Pizza"/>
                <owl:Restriction>
                    <owl:onProperty>
                        <owl:ObjectProperty rdf:about="#hasTopping"/>
                    </owl:onProperty>
                    <owl:someValuesFrom rdf:resource="#SpicyTopping"/>
                </owl:Restriction>
            </owl:Class>
        </owl:Class>
    </owl:equivalentClass>
</owl:Class>
```
class inclusion (\texttt{SubClassOf})

class equivalence (\texttt{EquivalentClasses})

class disjointness (\texttt{DisjointClasses})

object property inclusion (\texttt{SubObjectPropertyOf}) with or without property chains, and data property inclusion (\texttt{SubDataPropertyOf})

property equivalence (\texttt{EquivalentObjectProperties} and \texttt{EquivalentDataProperties}),

transitive object properties (\texttt{TransitiveObjectProperty})

reflexive object properties (\texttt{ReflexiveObjectProperty})

domain restrictions (\texttt{ObjectPropertyDomain} and \texttt{DataPropertyDomain})

range restrictions (\texttt{ObjectPropertyRange} and \texttt{DataPropertyRange})

assertions (\texttt{SameIndividual}, \texttt{DifferentIndividuals}, \texttt{ClassAssertion}, \texttt{ObjectPropertyAssertion}, \texttt{DataPropertyAssertion}, \texttt{NegativeObjectPropertyAssertion}, \texttt{NegativeDataPropertyAssertion})

functional data properties (\texttt{FunctionalDataProperty})

keys (\texttt{HasKey})
OWL Reasoning

- Reasoners are used to infer information that is not explicitly contained in the ontology
 - Consistency checking
 - Subsumption checking
 - Equivalence checking
 - Instantiation Checking

- Protégé
 - Fact++, Pellet, Racer, Kaon2
Ontologies in OWL are not trees, they are graphs.

- They are not only a hierarchy of classes
- They represent objects and relations about those objects (which includes subsumption relations, i.e. subclasses)

```xml
<owl:Class rdf:about="#Food"/>

<owl:Class rdf:about="#Pizza">
  <dfs:subClassOf rdf:resource="#Food"/>
</owl:Class>

<owl:ObjectProperty rdf:about="#hasBase">
  <rdf:type rdf:resource="&owl;FunctionalProperty"/>
  <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>
  <rdfs:domain rdf:resource="#Pizza"/>
  <rdfs:range rdf:resource="#PizzaBase"/>
  <dfs:subPropertyOf rdf:resource="#hasIngredient"/>
  <owl:inverseOf rdf:resource="#isBaseOf"/>
</owl:ObjectProperty>
```

...
Protégé + OWL