
CMSC 671CMSC 671

Fall 2010Fall 2010

Tue 10/26/10Tue 10/26/10

Scheduling and HTN PlanningScheduling and HTN Planning

MultiagentMultiagent PlanningPlanning
Chapter 11

Prof. Laura Zavala, laura.zavala@umbc.edu, ITE 373, 410-455-8775

2

Real-world planning domains

• Real-world domains are complex and don’t satisfy the
assumptions of STRIPS or partial-order planning methods

• Some of the characteristics we may need to deal with:

– Modeling and reasoning about resources

– Representing and reasoning about time

– Planning at different levels of abstractions

– Conditional outcomes of actions

– Uncertain outcomes of actions

– Exogenous events

– Incremental plan development

– Dynamic real-time replanning

} Scheduling

} HTN planning

} Planning under uncertainty

Scheduling

3

Scheduling

• Representing and solving planning problems

that include temporal and resource constraints

• Scheduling: Given a set of actions, resources, and

constraints, find the assignment of actions to resources

(including time assignments) that satisfies or optimizes the

set of constraints

4

Scheduling

• “Plan first, schedule later” approach

– Common in real-world manufacturing and logistical settings where

the planning is often performed by human experts.

– Automated classic planning methods that produce plans with just the

minimal ordering constraints can also be used for the planning

phase.

GRAPHPLAN, SATPLAN

(search based methods produce totally ordered plans)

5

Representing temporal and resource constraints

Job-shop scheduling

6

• Set of jobs to be completed (actions + ordering constraints)

• Available Resources

• Actions: duration and resource constraints (usage,

consumption, and production)

A<B:

action A must precede

action B Assembling two cars

Representing temporal and resource constraints

Job-shop scheduling

7

• A solution specifies the start times for each action

and must satisfy all constraints (ordering and

resources)

• Cost function is the total duration of the plan

(makespan)

A<B:

action A must precede

action B Assembling two cars

Job-shop scheduling

Assembling two cars example

8

Directed graph and timeline

representations of the

ordering constraints

Temporal scheduling

• Minimize makespan (total duration of all actions)

– Actions have earliest and latest possible start times: [ES, LS]

– LS-ES = slack time of an action

• Treat as graph-theoretic problem of finding shortest path

from earliest start time to latest end time of any action

– Path = linearization of plan

– Shortest path = path with shortest overall duration

• Critical path method: dynamic programming approach for

finding the shortest path

9

Temporal scheduling

10

• Critical path method

– Determine the possible start and end times of

each action

• Critical path

– Path whose total duration is the longest

– Delaying the start of an action slows down the

whole plan

– LS-ES = slack time of an action

• Each action on the critical path has no slack

Job-shop scheduling

Assembling two cars example

11

Directed graph and timeline

representations of the

ordering constraints

Temporal scheduling

12

• Critical path problems are easy to solve

– Linear in number of actions and branching

factor

– Conjunction of linear equalities on the start and

end times

Adding resource constraints

• Constraints may now be disjunctive:

– Two actions, A and B, sharing a resource can’t overlap

– A could end before B starts, or start after B ends

– Finding the optimal ordering is now NP-hard!

• Heuristics for finding a good ordering:

– Minimum slack: Greedy algorithm that chooses the

unscheduled action with the least slack (essentially a

most-constrained heuristic)

13

Adding resource constraints

• Constraints may now be disjunctive:

– Two actions, A and B, sharing a resource can’t overlap

– A could end before B starts, or start after B ends

– Finding the optimal ordering is now NP-hard!

14

The AddEngine actions require the same EngineHoist
Shortest duration solution (115 minutes)

Adding resource constraints

• Adding disjunctions makes scheduling with

resource constraints NP-hard.

• Heuristics for finding a good ordering:

– Minimum slack: Greedy algorithm that chooses the

unscheduled action with the least slack (essentially a

most-constrained heuristic)

15

HTN Planning

16

HTN Planning

• We may already have an idea how to go about

solving problems in a planning domain

• Exponential number of actions for real-world plans
– E.g. Travel to a far away destination

• Really difficult to make it as sequences of right, left, up, down moves

only

• Domain-independent planner:

– many combinations of vehicles and routes

• Solution - To do what humans appear to do:

Plan at higher levels of abstraction

HTN Planning

• Experienced human: small number of “recipes”

– e.g., flying:

1.buy ticket from local airport to remote airport

2.travel to local airport

3.fly to remote airport

4.travel to final destination

• How to enable planning systems to make use of

such recipes?

19

Hierarchical decomposition

• Hierarchical decomposition, or hierarchical task network (HTN)
planning, uses abstract operators to incrementally decompose a
planning problem from a high-level goal statement to a primitive plan
network

• Primitive operators represent actions that are executable, and can
appear in the final plan

• Non-primitive operators represent tasks (equivalently, abstract
actions) that require further decomposition (or operationalization) to be
executed

• Tasks decompose into subtasks

Constraints

Backtrack if necessary

• There is no “right” set of primitive actions: One agent’s goals are
another agent’s actions!

20

HTN operator: Example

OPERATOR decompose

PURPOSE: Construction

CONSTRAINTS:

Length (Frame) <= Length (Foundation),

Strength (Foundation) > Wt(Frame) + Wt(Roof)

+ Wt(Walls) + Wt(Interior) + Wt(Contents)

PLOT: Build (Foundation)

Build (Frame)

PARALLEL

Build (Roof)

Build (Walls)

END PARALLEL

Build (Interior)

21

HTN planning: example

Assumptions

• Full observability

• Determinism

• Availability of a set of actions

– Primitive Actions

• High level actions

– One or more possible refinements into a sequence of actions (HLA

or primitive)

• HLA library

Refinements

• Embody knowledge about how to do things

• Go to San Francisco airport

– Drive or take a taxi

– Buting milk, sitting down, etc., are not considered

Refinements example 2

• Navigating in the vacuum world

– To get to a destination, take a step, and then go to the destination

– Recursive nature of refinements

– Use of preconditions

HLA implementation

• An HLA refinement that contains only primitive

actions

Navigate ([1,3], [3,2])

[Right, Right, Down]

[Down, Down, Right]

Achieving the goal

• A high level plan achieves the goal from a given state if at

least one of its implementations achieves the goal from that

state

– Note: not all implementations need to achieve the goal

• Finding a solution plan

– Search among the implementations for one that works

– Reason directly about the HLAs

Search among the implementations for

one that works

• Repeatedly choose an HLA in the current plan and replace

it with one of its refinements

Plans are considered in order of depth of nesting of the refinements rather
than the number of primitive steps

Search among the implementations for

one that works

• Explores the space of sequences of actions, restricted ot

guided by the knowledge in the HLA library

• Very computationally efficient

• Even more efficient if the HLAs in the library have a small

number of refinements each yielding a long action sequence

– A case not very commonly found in practice: long action sequences

usable across a wide range of problems

• Generalize and Learn!

Searching for abstract solutions

• High level planning

[Drive(Home, SFOLongermParking), Shuttle

(SFOLongTermParking, SFO)]

• No need to know the details

– (route, parking spot, etc)

• Preconditions and effects for the HLAs

• Provably correct plans are derived without consideration of low level

implementations

– We can always work out the details of each step

– Exponential reduction

Searching for abstract solutions

Identify and commit to high-level plans that work while avoiding

high-level plans that don’t.

MAKING-PROGRESS checks to make sure that we aren’t stuck in an infinite regression of refinements

Example

From slides by Karen Myers, http://www.ai.sri.com/people/myers/

36

Reasoning about resources

• Introduce numeric variables that can be used as measures

• These variables represent resource quantities, and change
over the course of the plan

• Certain actions may produce (increase the quantity of)
resources

• Other actions may consume (decrease the quantity of)
resources

• More generally, may want different types of resources
– Continuous vs. discrete

– Sharable vs. nonsharable

– Reusable vs. consumable vs. self-replenishing

37

Other real-world planning issues

• Conditional planning

• Partial observability

• Information gathering actions

• Execution monitoring and replanning

• Continuous planning

• Multi-agent (cooperative or adversarial) planning

38

Planning summary

• Planning representations

– Situation calculus

– STRIPS and PDDL representation: Preconditions and

effects

• Planning approaches

– State-space search (STRIPS, forward chaining, backward

chaining)

– Plan-space search (partial-order planning, HTN)

– Constraint-based search (GraphPlan, SATplan)

Summary

• Problem solving

– Atomic representations of states

• Planning combines search and logic

– Problem solving algorithms that operate on explicit propositional or

relational representations of states and actions.

• PDDL describes the initial and goal states as conjunctions of literals,

and actions in terms of their preconditions and effects.

• State space planning performs forward or backward search on the state

space

– Progression planners choose applicable actions

– Regression planners choose relevant actions

• A planning graph encodes constraints on possible plans which can be

used to constrain the search for a valid plan

Summary

• Scheduling
– Representing and solving planning problems that include temporal

and resource constraints

– Temporal scheduling with critical path method is an easy problem

– Resource constraints

• Adding disjunctions makes scheduling with resource constraints
NP-hard

• HTN Plannning

– Plan space planning

– Library of HLAs

– Finding a solution plan

• Search among the implementations for one that works

• Reason directly about the HLAs

– Preconditions and effects

Applications

From slides by Karen Myers, http://www.ai.sri.com/people/myers/

Multiagent Planning

• Planning with multiple agents

– Each agent makes its plan

– Joint actions

• <a1, …, an) where ai is the action taken by the ith actor

• Transition model and joint planning problem

– Complexity of the problem grows exponentially

– Loosely coupled agents

– Goals and knowledge base might or might not be shared

• Can each agent just compute the joint solution and execute its own part?

– There is no right single joint solution

The doubles tennis problem

• Classes as

A: [Go(A, RightBaseline), Hit(A, Ball)]
B: [NoOp(B), NoOp(B)]

A: [Go(A, LeftNet), NoOp(A)]
B: [Go(B, RightBaseline), Hit(B, Ball)]

Multiagent Planning

• Each agent makes its own plan

• Agents are loosely coupled

• Agents need

– Synchronization

– Cooperation

• Conventions

• Social Laws

– Coordination

• Communication (implicit or explicit)

– Negotiation

Multiagent Planning in practice

From slides by Karen Myers, http://www.ai.sri.com/people/myers/

Multiagent planning
Some practical problems studied in research

• Target tracking

This problem was inspired by a DARPA-sponsored project we, along
with MAS researchers from other universities, worked on. The problem
involves a set of radars laid out in a field and their need to coordinate in
order to track some moving targets.

• The Mailmen Problem
The mailman problem is an instance of the task allocation problem
which is discussed in "Introduction to Multiagent Systems" by Mike
Wooldridge, Chapter 7.3.1.

– n deliverators (mailmen), k letters to deliver to m locations

• Incentive Compatible Package Delivery
The basic problem is that we have a number of agents (known as
"deliverators"), each one is assigned a number of deliveries. The
deliverators try to get some other unsuspecting deliverator to do the next
task that they have to deliver for them.

http://www.csee.umbc.edu/~rzavala/netlogomas.html

