

CMSC 671 Fall 2010

Tue 10/26/10

Scheduling and HTN Planning Multiagent Planning Chapter 11

Prof. Laura Zavala, laura.zavala@umbc.edu, ITE 373, 410-455-8775

Real-world planning domains

- Real-world domains are complex and don't satisfy the assumptions of STRIPS or partial-order planning methods
- Some of the characteristics we may need to deal with:
 - Modeling and reasoning about resources
 - Representing and reasoning about time
 - Planning at different levels of abstractions
 - Conditional outcomes of actions
 - Uncertain outcomes of actions
 - Exogenous events
 - Incremental plan development
 - Dynamic real-time replanning

Planning under uncertainty
HTN planning

Scheduling

Scheduling

- Representing and solving planning problems that include *temporal* and *resource* constraints
- Scheduling: Given a set of actions, resources, and constraints, find the assignment of actions to resources (including time assignments) that satisfies or optimizes the set of constraints

Scheduling

- "Plan first, schedule later" approach
 - Common in real-world manufacturing and logistical settings where the planning is often performed by human experts.
 - Automated classic planning methods that produce plans with just the minimal ordering constraints can also be used for the planning phase.

```
GRAPHPLAN, SATPLAN
```

(search based methods produce totally ordered plans)

Representing temporal and resource constraints Job-shop scheduling

- Set of **jobs** to be completed (actions + ordering constraints)
- Available Resources
- Actions: duration and resource constraints (usage, consumption, and production)

Representing temporal and resource constraints Job-shop scheduling

- A solution specifies the start times for each action and must satisfy all constraints (ordering and resources)
- Cost function is the total duration of the plan (makespan)

A<B:

action A must precede action B

$Jobs(\{AddEngine1 \prec AddWheels1 \prec Inspect1\}, \\ \{AddEngine2 \prec AddWheels2 \prec Inspect2\})$	
Resources(EngineHoists(1), WheelStations(1), Inspectors(2), LugNukaran Statistics(1), LugNukaran Statistics(1), Statistics(1	uts(500))
Action(AddEngine1, DURATION:30,	
USE: EngineHoists(1))	
Action(AddEngine2, DURATION:60,	
USE: EngineHoists(1))	
Action(AddWheels1, DURATION:30,	
CONSUME: LugNuts(20), USE: WheelStations(1))	
Action(AddWheels2, DURATION:15,	
CONSUME: LugNuts(20), USE: WheelStations(1))	
$Action(Inspect_i, DURATION:10,$	
USE: Inspectors(1)) Assembling	g two cars

Job-shop scheduling

Assembling two cars example

Directed graph and timeline representations of the ordering constraints

Jobs({AddEngine1 < AddWheels1 < Inspect1}, {AddEngine2 < AddWheels2 < Inspect2}) Resources(EngineHoists(1), WheelStations(1), Inspectors(2), LugNuts(500)) Action(AddEngine1, DURATION:30, USE: EngineHoists(1)) Action(AddEngine2, DURATION:60, USE: EngineHoists(1)) Action(AddWheels1, DURATION:30, CONSUME: LugNuts(20), USE: WheelStations(1)) Action(AddWheels2, DURATION:15, CONSUME: LugNuts(20), USE: WheelStations(1)) Action(Inspect, DURATION:10, USE: Inspectors(1))

Temporal scheduling

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

- Minimize **makespan** (total duration of all actions)
 - Actions have earliest and latest possible start times: [ES, LS]
 - LS-ES = slack time of an action
- Treat as graph-theoretic problem of finding shortest path from earliest start time to latest end time of any action
 - Path = linearization of plan
 - Shortest path = path with shortest overall duration
- **Critical path method**: dynamic programming approach for finding the shortest path

Temporal scheduling

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Critical path method

-Determine the possible start and end times of each action

Critical path

- -Path whose total duration is the longest
- -Delaying the start of an action slows down the whole plan
- -LS-ES = slack time of an action
 - Each action on the critical path has no slack

Job-shop scheduling

Assembling two cars example

Directed graph and timeline representations of the ordering constraints

Jobs({AddEngine1 < AddWheels1 < Inspect1 }, {AddEngine2 < AddWheels2 < Inspect2 }) Resources(EngineHoists(1), WheelStations(1), Inspectors(2), LugNuts(500)) Action(AddEngine1, DURATION:30, USE: EngineHoists(1)) Action(AddEngine2, DURATION:60, USE: EngineHoists(1)) Action(AddWheels1, DURATION:30, CONSUME: LugNuts(20), USE: WheelStations(1)) Action(AddWheels2, DURATION:15, CONSUME: LugNuts(20), USE: WheelStations(1)) Action(Inspect_i, DURATION:10, USE: Inspectors(1))

Critical path problems are easy to solve

- -Linear in number of actions and branching factor
- -Conjunction of linear equalities on the start and end times

Adding resource constraints

- Constraints may now be disjunctive:
 - Two actions, A and B, sharing a resource can't overlap
 - A could end before B starts, or start after B ends
 - Finding the optimal ordering is now NP-hard!
- Heuristics for finding a good ordering:
 - Minimum slack: Greedy algorithm that chooses the unscheduled action with the least slack (essentially a

Adding resource constraints

- Constraints may now be disjunctive:
 - Two actions, A and B, sharing a resource can't overlap
 - A could end before B starts, or start after B ends
 - Finding the optimal ordering is now NP-hard!

The AddEngine actions require the same EngineHoist Shortest duration solution (115 minutes)

Adding resource constraints

- Adding disjunctions makes scheduling with resource constraints NP-hard.
- Heuristics for finding a good ordering:
 - Minimum slack: Greedy algorithm that chooses the unscheduled action with the least slack (essentially a most-constrained heuristic)

HTN Planning

HTN Planning

- We may already have an idea how to go about solving problems in a planning domain
- Exponential number of actions for real-world plans
 - E.g. Travel to a far away destination
 - Really difficult to make it as sequences of *right*, *left*, *up*, *down* moves only
 - Domain-independent planner:
 - many combinations of vehicles and routes
- Solution To do what humans appear to do: Plan at higher levels of abstraction

HTN Planning

- Experienced human: small number of "recipes"
 - e.g., flying:
 - 1. buy ticket from local airport to remote airport
 - 2. travel to local airport
 - 3.fly to remote airport
 - 4. travel to final destination
- How to enable planning systems to make use of such recipes?

Hierarchical decomposition

- Hierarchical decomposition, or hierarchical task network (HTN) planning, uses abstract operators to incrementally decompose a planning problem from a high-level goal statement to a primitive plan network
- **Primitive operators** represent actions that are **executable**, and can appear in the final plan
- Non-primitive operators represent tasks (equivalently, abstract actions) that require further decomposition (or *operationalization*) to be executed
- Tasks decompose into subtasks

Constraints

Backtrack if necessary

• There is no "right" set of primitive actions: One agent's goals are another agent's actions!

HTN operator: Example

OPERATOR decompose PURPOSE: Construction CONSTRAINTS: Length (Frame) <= Length (Foundation), Strength (Foundation) > Wt(Frame) + Wt(Roof) + Wt(Walls) + Wt(Interior) + Wt(Contents) PLOT: Build (Foundation) Build (Frame) PARALLEL Build (Roof) Build (Walls) END PARALLEL Build (Interior)

HTN planning: example

 $- \bigcirc \bigcirc \bigcirc -$

Assumptions

- Full observability
- Determinism
- Availability of a set of actions
 - Primitive Actions
- High level actions
 - One or more possible refinements into a sequence of actions (HLA or primitive)
- HLA library

Refinements

- Embody knowledge about *how to do things*
- Go to San Francisco airport
 - Drive or take a taxi
 - Buting milk, sitting down, etc., are not considered

Refinement(Go(Home, SFO), STEPS: [Drive(Home, SFOLongTermParking), Shuttle(SFOLongTermParking, SFO)]) Refinement(Go(Home, SFO), STEPS: [Taxi(Home, SFO)])

Refinements example 2

• Navigating in the vacuum world

- To get to a destination, take a step, and then go to the destination
- Recursive nature of refinements
- Use of preconditions

```
\begin{aligned} &Refinement(Navigate([a, b], [x, y]), \\ &PRECOND: a = x \land b = y \\ &STEPS: [] ) \\ &Refinement(Navigate([a, b], [x, y]), \\ &PRECOND:Connected([a, b], [a - 1, b]) \\ &STEPS: [Left, Navigate([a - 1, b], [x, y])] ) \\ &Refinement(Navigate([a, b], [x, y]), \\ &PRECOND:Connected([a, b], [x, y]), \\ &PRECOND:Connected([a, b], [a + 1, b]) \\ &STEPS: [Right, Navigate([a + 1, b], [x, y])] ) \end{aligned}
```


HLA implementation

• An HLA refinement that contains only primitive actions

Navigate ([1,3], [3,2]) [Right, Right, Down] [Down, Down, Right]

Achieving the goal

- A high level plan achieves the goal from a given state if at least one of its implementations achieves the goal from that state
 - Note: not all implementations need to achieve the goal
- Finding a solution plan
 - Search among the implementations for one that works
 - Reason directly about the HLAs

Search among the implementations for one that works

• Repeatedly choose an HLA in the current plan and replace it with one of its refinements

function HIERARCHICAL-SEARCH(problem, hierarchy) returns a solution, or failure
frontier ← a FIFO queue with [Act] as the only element
loop do
if EMPTY?(frontier) then return failure
plan ← POP(frontier) /* chooses the shallowest plan in frontier */
hla ← the first HLA in plan, or null if none
prefix,suffix ← the action subsequences before and after hla in plan
outcome ← RESULT(problem.INITIAL-STATE, prefix)
if hla is null then /* so plan is primitive and outcome is its result */
if outcome satisfies problem.GOAL then return plan
else for each sequence in REFINEMENTS(hla, outcome, hierarchy) do
frontier ← INSERT(APPEND(prefix, sequence, suffix), frontier)

Figure 11.5 A breadth-first implementation of hierarchical forward planning search. The initial plan supplied to the algorithm is [*Act*]. The REFINEMENTS function returns a set of action sequences, one for each refinement of the HLA whose preconditions are satisfied by the specified state, *outcome*.

Plans are considered in order of depth of nesting of the refinements rather than the number of primitive steps

Search among the implementations for one that works

- Explores the space of sequences of actions, restricted ot guided by the knowledge in the HLA library
- Very computationally efficient
- Even more efficient if the HLAs in the library have a small number of refinements each yielding a long action sequence
 - A case not very commonly found in practice: long action sequences usable across a wide range of problems
- Generalize and Learn!

Searching for abstract solutions

• High level planning

[Drive(Home, SF0LongermParking), Shuttle
(SF0LongTermParking, SF0)]

- No need to know the details
 - (route, parking spot, etc)
- Preconditions and effects for the HLAs
- Provably correct plans are derived without consideration of low level implementations
 - We can always work out the details of each step
 - Exponential reduction

Searching for abstract solutions

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

function ANGELIC-SEARCH(problem, hierarchy, initialPlan) returns solution or fail frontier \leftarrow a FIFO queue with initialPlan as the only element loop do if EMPTY?(frontier) then return fail $plan \leftarrow POP(frontier) /*$ chooses the shallowest node in frontier */ if REACH⁺ (problem.INITIAL-STATE, plan) intersects problem.GOAL then if plan is primitive then return plan /* REACH⁺ is exact for primitive plans */ $quaranteed \leftarrow \text{REACH}^{-}(problem.INITIAL-STATE, plan) \cap problem.GOAL$ if $guaranteed \neq \{\}$ and MAKING-PROGRESS(plan, initialPlan) then *finalState* \leftarrow any element of *quaranteed* return DECOMPOSE(hierarchy, problem.INITIAL-STATE, plan, finalState) $hla \leftarrow \text{some HLA in } plan$ prefix, suffix \leftarrow the action subsequences before and after hla in plan for each sequence in REFINEMENTS(hla, outcome, hierarchy) do $frontier \leftarrow \text{INSERT}(\text{APPEND}(prefix, sequence, suffix}), frontier)$ function DECOMPOSE(*hierarchy*, s_0 , *plan*, s_f) returns a solution $solution \leftarrow$ an empty plan while plan is not empty do $action \leftarrow \text{REMOVE-LAST}(plan)$ $s_i \leftarrow a \text{ state in REACH}^-(s_0, plan) \text{ such that } s_f \in \text{REACH}^-(s_i, action)$ problem \leftarrow a problem with INITIAL-STATE = s_i and GOAL = s_f $solution \leftarrow APPEND(ANGELIC-SEARCH(problem, hierarchy, action), solution)$

Identify and commit to high-level plans that work while avoiding high-level plans that don't.

MAKING-PROGRESS checks to make sure that we aren't stuck in an infinite regression of refinements

 $s_f \leftarrow s_i$ return solution

Example

From slides by Karen Myers, http://www.ai.sri.com/people/myers/

Reasoning about resources

- Introduce numeric variables that can be used as *measures*
- These variables represent resource quantities, and change over the course of the plan
- Certain actions may produce (increase the quantity of) resources
- Other actions may consume (decrease the quantity of) resources
- More generally, may want different types of resources
 - Continuous vs. discrete
 - Sharable vs. nonsharable
 - Reusable vs. consumable vs. self-replenishing

Other real-world planning issues

- Conditional planning
- Partial observability
- Information gathering actions
- Execution monitoring and replanning
- Continuous planning
- Multi-agent (cooperative or adversarial) planning

Planning summary

• Planning representations

- Situation calculus
- STRIPS and PDDL representation: Preconditions and effects

Planning approaches

- State-space search (STRIPS, forward chaining, backward chaining)
- Plan-space search (partial-order planning, HTN)
- Constraint-based search (GraphPlan, SATplan)

Summary

- Problem solving
 - Atomic representations of states
- Planning combines search and logic
 - Problem solving algorithms that operate on explicit propositional or relational representations of states and actions.
- PDDL describes the initial and goal states as conjunctions of literals, and actions in terms of their preconditions and effects.
- State space planning performs forward or backward search on the state space
 - Progression planners choose **applicable** actions
 - Regression planners choose relevant actions
- A planning graph encodes constraints on possible plans which can be used to constrain the search for a valid plan

Summary

- Scheduling
 - Representing and solving planning problems that include temporal and resource constraints
 - Temporal scheduling with critical path method is an easy problem
 - Resource constraints
 - Adding disjunctions makes scheduling with resource constraints NP-hard
- HTN Planning
 - Plan space planning
 - Library of HLAs
 - Finding a solution plan
 - Search among the implementations for one that works
 - Reason directly about the HLAs
 - Preconditions and effects

Applications

Military Logistics

Robots

Games

Manufacturing

Autonomous Spacecraft

From slides by Karen Myers, http://www.ai.sri.com/people/myers/

Multiagent Planning

- Each agent makes its plan
- Joint actions
 - $\langle a_1, \ldots, a_n \rangle$ where a_i is the action taken by the *ith* actor
 - Transition model and joint planning problem
 - Complexity of the problem grows exponentially
- Loosely coupled agents
- Goals and knowledge base might or might not be shared
 - Can each agent just compute the joint solution and execute its own part?
 - There is no right single joint solution

The doubles tennis problem

• Class

 $\begin{array}{l} Actors(A,B) \\ Init(At(A, LeftBaseline) \land At(B, RightNet) \land \\ Approaching(Ball, RightBaseline)) \land Partner(A,B) \land Partner(B,A) \\ Goal(Returned(Ball) \land (At(a, RightNet) \lor At(a, LeftNet)) \\ Action(Hit(actor, Ball), \\ PRECOND:Approaching(Ball, loc) \land At(actor, loc) \\ EFFECT:Returned(Ball)) \\ Action(Go(actor, to), \\ PRECOND:At(actor, loc) \land to \neq loc, \\ EFFECT:At(actor, to) \land \neg At(actor, loc)) \end{array}$

Figure 11.10 The doubles tennis problem. Two actors *A* and *B* are playing together and can be in one of four locations: *LeftBaseline*, *RightBaseline*, *LeftNet*, and *RightNet*. The ball can be returned only if a player is in the right place. Note that each action must include the actor as an argument.

A: [Go(A, RightBaseline), Hit(A, Ball)] B: [NoOp(B), NoOp(B)]

A: [Go(A, LeftNet), NoOp(A)] B: [Go(B, RightBaseline), Hit(B, Ball)]

Multiagent Planning

- Each agent makes its own plan
- Agents are loosely coupled
- Agents need
 - Synchronization
 - Cooperation
 - Conventions
 - Social Laws
 - Coordination
 - Communication (implicit or explicit)
 - Negotiation

Multiagent Planning in practice

Team Work

 Cooperative maneuvering

Air Traffic Management: A Collaborative Multi-Agent System

http://www.natca.org/flight-explorer/united-states.aspx

From slides by Karen Myers, http://www.ai.sri.com/people/myers/

Multiagent planning

Some practical problems studied in research

• Target tracking

This problem was inspired by a DARPA-sponsored project we, along with MAS researchers from other universities, worked on. The problem involves a set of radars laid out in a field and their need to coordinate in order to track some moving targets.

• The Mailmen Problem

The mailman problem is an instance of the task allocation problem which is discussed in "Introduction to Multiagent Systems" by Mike Wooldridge, Chapter 7.3.1.

- n deliverators (mailmen), k letters to deliver to m locations

• Incentive Compatible Package Delivery

The basic problem is that we have a number of agents (known as "deliverators"), each one is assigned a number of deliveries. The deliverators try to get some other unsuspecting deliverator to do the next task that they have to deliver for them.