
CMSC 671CMSC 671

Fall 2010Fall 2010

Thu 10/19/10Thu 10/19/10

State space planningState space planning

GraphGraph--based planning: based planning: GraphPlanGraphPlan
Chapter 10

Prof. Laura Zavala, laura.zavala@umbc.edu, ITE 373, 410-455-8775

2

Planning problem

• Find a sequence of actions that achieves a given goal when

executed from a given initial world state. That is, given

– a set of operator descriptions (defining the possible primitive actions

by the agent),

– an initial state description, and

– a goal state description or predicate,

compute a plan, which is

– a sequence of operator instances, such that executing them in the

initial state will change the world to a state satisfying the goal-state

description.

• Goals are usually specified as a conjunction of goals to be

achieved

Planning

• Planning is finding and choosing a sequence (or a
“program”) of actions to achieve goals.

• Unlike theorem prover, not seeking whether the goal is true,
but is there a sequence of actions to attain it

• Move C to the table

• Put B on top of C

• Put A on top of B

4

Typical assumptions

• Atomic time: Each action is indivisible

• No concurrent actions are allowed (though actions do not

need to be ordered with respect to each other in the plan)

• Deterministic actions: The result of actions are completely

determined—there is no uncertainty in their effects

• Agent is the sole cause of change in the world

• Agent is omniscient: Has complete knowledge of the state

of the world

• Database semantics: close world assumption and unique

names assumption

5

PDDL: Planning Domain Definition Language

• States represented as a conjunction of ground literals
– at(Home) ∧ have(Milk) ∧ have(bananas) ...

• Actions have
– Action Name and Parameter List

– Precondition - conjunction of positive literals

– Effect - conjunction of positive or negative literals which describe how
situation changes when operator is applied

• Aplicability - States that satisfies the precondition

• Result - After performing an action we can obtain:
– Delete list and add list: what should be removed and added to the state

Actions are specified in terms of what changes; everything that stays the same is
left unmentioned

Action(Fly(p,from, to),

PRECOND: At(p,from) ∧ Plane(p) ∧ Airport(from) ∧
Airport(to)

EFFECT: ¬AT(p,from) ∧ At(p,to))

A way to represent states, actions and goals

Approaches

• State-space search

– The plan is a solution found by “searching” through the situations to

get to the goal

• Forward state-space search

• Backward relevant state search

• Graph-based search: GraphPlan

• Hierarchical Planning

• Multiagent Planning

• Progression planners

– Forward state-space search

– Consider the effect of all possible actions in a given state

– Choose applicable actions

• Regression planners

– Backward state-space search

– Determine what must have been true in the previous state in order to achieve
the current state

– Choose relevant actions

State-space planning

Progression algorithm

• Formulation as state-space search problem:
– Initial state and goal test: obvious

– Successor function: generate from applicable actions

– Step cost = each action costs 1

• Any complete graph search algorithm is a complete
planning algorithm.
– E.g. A*

• Inherently inefficient:
– (1) irrelevant actions lead to very broad search tree

– (2) good heuristic required for efficient search

Forward search explores irrelevant

actions

Regression algorithm

• General process for predecessor construction
– Give a goal description G

– Let A be an action that is relevant and consistent

– The predecessors are as follows:

• Any positive effects of A that appear in G are deleted.

• Each precondition literal of A is added , unless it already appears.

• Any standard search algorithm can be added to perform the
search.

• Termination when predecessor satisfied by initial state.

– In FO case, satisfaction might require a substitution.

Regression algorithm

• How to determine predecessors?

– What are the states from which applying a given action leads to the goal?

Goal state = At(C1, B) ∧ At(C2, B) ∧ … ∧ At(C20, B)

Relevant action for first conjunct: Unload(C1,p,B)

Works only if pre-conditions are satisfied.

Action (Unload(C,p’,B),

Precond: In(C,p’) ∧ At(p’, B) ∧ Cargo(C) ∧ Plane(p’) ∧ Airport(B)

Effect: At(C,B) ∧ ¬In(C,p’)

Previous state g’= In(C1, p’) ∧ At(p’, B) ∧ Cargo(C) ∧ Plane(p’) ∧ Airport(B)

Subgoal At(C1,B) should not be present in this state.

• Relevant actions:

– At least one of the action’s effects must unify with an element of the goal

– Must not have any effect that negates an element of the goal

GraphPlan

• Construct a graph that encodes constraints on possible plans and

use it to constrain search for a valid plan

Planning graph
• Directed, leveled graph with alternating layers of nodes

• Odd layers (“state levels”) represent candidate propositions that
could possibly hold at step i

• Even layers (“action levels”) represent candidate actions that
could possibly be executed at step i, including maintenance
actions [do nothing]

• Arcs represent preconditions, adds and deletes

• We can only execute one real action at any step, but the data
structure keeps track of all actions and states that are possible

GraphPlan example

• Initial State: Have(Cake)

• Goal state: Have(Cake) ∧ Eaten(Cake)

• Action Eat(Cake)

– Precondition: Have(Cake)

– Effect: ¬Have(Cake) ∧ Eaten(Cake)

• Action Bake(Cake)

– Precondition: ¬ Have(Cake)

– Effect: Have(Cake)

What actions and what literals?

• Add an action in level Ai if all of its preconditions

are present in level Si

• Add a literal in level Si if it is the effect of some

action in level Ai-1 (including no-ops)

• Level S0 has all of the literals from the initial state

Exclusion relations (mutexes)

• Two actions (or literals) are mutually exclusive
(“mutex”) at step i if no valid plan could contain
both actions at that step

• Can quickly find and mark some mutexes:

– Inconsistent effects: Two actions whose effects are
mutex with each other

– Interference: Two actions that interfere (the effect of
one negates the precondition of another) are mutex

– Competing needs: Two actions are mutex if any of their
preconditions are mutex with each other

– Inconsistent support: Two literals are mutex if all ways
of creating them both are mutex

Simple domain

• Literals:
– at X Y X is at location Y

– fuel R rocket R has fuel

– in X R X is in rocket R

• Actions:
– load X L load X (onto R) at location L

(X and R must be at L)

– unload X L unload X (from R) at location L
(R must be at L)

– move X Y move rocket R from X to Y
(R must be at X and have fuel)

• Graph representation:
– Solid black lines: preconditions/effects

– Dotted red lines: negated preconditions/effects

Example planning graph

States

S0

Actions

A0

States

S1

Actions

A1

States

S2

Actions

A2

States

S3

(Goals!)

at A L

at B L

at R L

fuel R

load A L

load B L

move L P

in A R

in B R

fuel R

at A L

at B L

at R L

at R P

load A L

load B L

move L P

move P L

at A L

at B L

at R L

fuel R

in A R

in B R

at R P

unload A P

unload B P

at A P

at B P

move P L

move L P

at A L

at B L

at R L

fuel R

load A L

load B L

move L P

in A R

in B R

fuel R

at A L

at B L

at R L

at R P

load A L

load B L

at A L

at B L

at R L

fuel R

in A R

in B R

at R P

unload A P

unload B P

at A P

at B P

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

Inconsistent effects
States
S0

Actions
A0

States
S1

Actions
A1

States
S2

Actions
A2

States
S3

(Goals!)

move P L

move L P

at A L

at B L

at R L

fuel R

load A L

load B L

move L P

in A R

in B R

fuel R

at A L

at B L

at R L

at R P

load A L

load B L

at A L

at B L

at R L

fuel R

in A R

in B R

at R P

unload A P

unload B P

at A P

at B P

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

Interference
States
S0

Actions
A0

States
S1

Actions
A1

States
S2

Actions
A2

States
S3

(Goals!)

Example: Mutex constraints

move P L

move L P

at A L

at B L

at R L

fuel R

load A L

load B L

move L P

in A R

in B R

fuel R

at A L

at B L

at R L

at R P

load A L

load B L

at A L

at B L

at R L

fuel R

in A R

in B R

at R P

unload A P

unload B P

at A P

at B P

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

Inconsistent support
States
S0

Actions
A0

States
S1

Actions
A1

States
S2

Actions
A2

States
S3

(Goals!)

Example: Mutex constraints

move P L

move L P

at A L

at B L

at R L

fuel R

load A L

load B L

move L P

in A R

in B R

fuel R

at A L

at B L

at R L

at R P

load A L

load B L

at A L

at B L

at R L

fuel R

in A R

in B R

at R P

unload A P

unload B P

at A P

at B P

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

Competing needs
States
S0

Actions
A0

States
S1

Actions
A1

States
S2

Actions
A2

States
S3

(Goals!)

Example: Mutex constraints

Valid plans

• A valid plan is a planning graph in which:

– Actions at the same level don’t interfere (delete each
other’s preconditions or add effects)

– Each action’s preconditions are true at that point in the
plan

– Goals are satisfied at the end of the plan

Basic GraphPlan algorithm

• Grow the planning graph (PG) until all goals are
reachable and none are pairwise mutex. (If PG
levels off [reaches a steady state] first, fail)

• Search the PG for a valid plan

• If none found, add a level to the PG and try again

Creating the planning graph is

usually fast

• Theorem:

The size of the t-level planning graph and the time

to create it are polynomial in:

– t (number of levels),

– n (number of objects),

– m (number of operators), and

– p (number of propositions in the initial state)

Searching for a plan

• Backward chain on the planning graph

• Complete all goals at one level before going back

• At level i, pick a non-mutex subset of actions that achieve
the goals at level i+1. The preconditions of these actions
become the goals at level i

– Various heuristics can be used for choosing which actions to select

• Build the action subset by iterating over goals, choosing an
action that has the goal as an effect. Use an action that was
already selected if possible. Do forward checking on
remaining goals.

Summary

• Problem solving

– Atomic representations of states

• Planning combines search and logic

– Problem solving algorithms that operate on explicit propositional or

relational representations of states and actions.

• PDDL describes the initial and goal states as conjunctions of literals,

and actions in terms of their preconditions and effects.

• State space planning performs forward or backward search on the state

space

– Progression planners choose applicable actions

– Regression planners choose relevant actions

• A planning graph encodes constraints on possible plans which can be

used to constrain the search for a valid plan

