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Today’s class

• What is planning?

• Representation 

– PDDL

• Approaches to planning

– GPS /STRIPS

– Situation calculus formalism

– State space planning

– Graph-based planning
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Planning problem

• Find a sequence of actions that achieves a given goal when 

executed from a given initial world state.  That is, given 

– a set of operator descriptions (defining the possible primitive actions 

by the agent), 

– an initial state description, and 

– a goal state description or predicate, 

compute a plan, which is 

– a sequence of operator instances, such that executing them in the 

initial state will change the world to a state satisfying the goal-state 

description. 

• Goals are usually specified as a conjunction of goals to be 

achieved



Planning

• Planning is finding and choosing a sequence (or a 
“program”) of actions to achieve goals.

• Unlike theorem prover, not seeking whether the goal is true, 
but is there a sequence of actions to attain it 

• Move C to the table

• Put B on top of C

• Put A on top of B
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Planning vs. problem solving

•Planning and problem solving 

methods can often solve the same 

sorts of problems
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Planning vs. problem solving

• Problem solving deals with atomic 

representations of states

• Planning is more powerful because of 

the representations and methods used
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Planning vs. problem solving

• States, goals, and actions are decomposed into sets 

of sentences (usually in first-order logic or a subset 

of it)

• Search often proceeds through plan space rather 

than state space (though there are also state-space 

planners)

• Subgoals can be planned independently, reducing 

the complexity of the planning problem
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Typical assumptions

• Atomic time: Each action is indivisible 

• No concurrent actions are allowed  (though actions do not 

need to be ordered with respect to each other in the plan)

• Deterministic actions: The result of actions are completely 

determined—there is no uncertainty in their effects 

• Agent is the sole cause of change in the world 

• Agent is omniscient: Has complete knowledge of the state 

of the world 

• Database semantics: close world assumption and unique 

names assumption



Representation

–General planning algorithms require a way 

to represent states, actions and goals

–STRIPS, PDDL are languages based on 

propositional or first-order logic
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PDDL: Planning Domain Definition 

Language

• States represented as a conjunction of ground literals

– at(Home) ∧ have(Milk) ∧ have(bananas) ...

• Actions have

– Action Name and Parameter List

– Precondition - conjunction of positive literals 

– Effect - conjunction of positive or negative literals which describe how

situation changes when operator is applied 

Actions are specified in terms of what changes; everything that stays the 

same is left unmentioned

Action(Fly(p,from, to),

PRECOND: At(p,from) ∧ Plane(p) ∧ Airport(from) ∧
Airport(to)

EFFECT: ¬AT(p,from) ∧ At(p,to))



Applicability of Actions

• An action is applicable in any state that satisfies the precondition.

• For FO action schema applicability involves a substitution θ for the 
variables in the PRECOND.

At(P1,JFK) ∧ At(P2,SFO) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(JFK) ∧ Airport(SFO)

Satisfies : At(p,from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)

With θ ={p/P1,from/JFK,to/SFO}

Thus the action is applicable.



Effect of Actions

• Executing action a in state s results in state s’,
where s’ is same as s except

– Any positive literal P in the effect of a is added to s’

– Any negative literal ¬P is removed from s’

s: At(P1,JFK) ∧ At(P2,SFO) 
∧ Plane(P1) ∧ Plane(P2) ∧ Airport(JFK) ∧ Airport(SFO)

EFFECT: ¬AT(p,from) ∧ At(p,to):

s’: At(P1,SFO) ∧ At(P2,SFO)
∧ Plane(P1) ∧ Plane(P2) ∧ Airport(JFK) ∧ Airport(SFO)

• assumption: every literal NOT in the effect remains unchanged
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Blocks world operators

• Here are the classic basic operations for the blocks world:
– stack(X,Y): put block X on block Y

– unstack(X,Y): remove block X from block Y

– pickup(X): pickup block X

– putdown(X): put block X on the table

• Each action will be represented by: 
– a list of preconditions

– a list of new facts to be added (add-effects)

– a list of facts to be removed (delete-effects)

– optionally, a set of (simple) variable constraints

• For example:
preconditions(stack(X,Y), [holding(X), clear(Y)])

deletes(stack(X,Y), [holding(X), clear(Y)]).

adds(stack(X,Y), [handempty, on(X,Y), clear(X)])

constraints(stack(X,Y), [X≠Y, Y≠table, X≠table])
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Blocks world

The blocks world is a micro-world that 

consists of a table, a set of blocks and a 

robot hand.

Some domain constraints:

– Only one block can be on another block

– Any number of blocks can be on the table

– The hand can only hold one block

Typical representation:

ontable(a)

ontable(c)

on(b,a)

handempty

clear(b)

clear(c)

A

B

C

TABLE
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Blocks world operators II

operator(stack(X,Y), 

Precond [holding(X), clear(Y)],

Add [handempty, on(X,Y), clear(X)],

Delete [holding(X), clear(Y)],

Constr [X≠Y, Y≠table, X≠table]).

operator(pickup(X),

[ontable(X), clear(X), handempty],

[holding(X)],

[ontable(X), clear(X), handempty],

[X≠table]).

operator(unstack(X,Y), 

[on(X,Y), clear(X), handempty],

[holding(X), clear(Y)],

[handempty, clear(X), on(X,Y)],

[X≠Y, Y≠table, X≠table]).

operator(putdown(X), 

[holding(X)],

[ontable(X), handempty, clear(X)],

[holding(X)],

[X≠table]).
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Major approaches

• GPS / STRIPS /PDDL 

• Progression and Regression

• Situation calculus

• Partial-order planning

• Planning with constraints (SATplan, Graphplan)

• Hierarchical decomposition (HTN planning)

• Reactive planning
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General Problem Solver

• The General Problem Solver (GPS) system was an early 
planner (Newell, Shaw, and Simon) 

• GPS generated actions that reduced the difference between 
some state and a goal state

• GPS used Means-Ends Analysis
– Compare what is given or known with what is desired and select a

reasonable thing to do next

– Use a table of differences to identify procedures to reduce types of 
differences

• GPS was a state space planner: it operated in the domain of 
state space problems specified by an initial state, some goal 
states, and a set of operations
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Situation calculus planning

• Intuition:  Represent the planning problem using 

first-order logic

– Situation calculus lets us reason about changes in 

the world

– Use theorem proving to “prove” that a particular 

sequence of actions, when applied to the 

situation characterizing the world state, will lead 

to a desired result
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Situation calculus

• Initial state: a logical sentence about (situation) S0

At(Home, S0) ∧ ¬Have(Milk, S0) ∧ ¬ Have(Bananas, S0) ∧ ¬ Have(Drill, S0)

• Goal state: 

(∃s) At(Home,s) ∧ Have(Milk,s) ∧ Have(Bananas,s) ∧ Have(Drill,s)

• Operators are descriptions of how the world changes as a 

result of the agent’s actions: 

∀(a,s) Have(Milk,Result(a,s)) ⇔

((a=Buy(Milk) ∧ At(Grocery,s)) ∨ (Have(Milk, s) ∧ a ≠ Drop(Milk)))

• Result(a,s) names the situation resulting from executing 

action a in situation s. 

• Action sequences are also useful: Result'(l,s) is the result of 

executing the list of actions (l) starting in s:

(∀s) Result'([],s) = s

(∀a,p,s) Result'([a|p]s) = Result'(p,Result(a,s))



21

Situation calculus II

• A solution is a plan that when applied to the initial state 

yields a situation satisfying the goal query: 

At(Home, Result'(p,S0)) 

∧ Have(Milk, Result'(p,S0))

∧ Have(Bananas, Result'(p,S0))

∧ Have(Drill, Result'(p,S0))

• Thus we would expect a plan (i.e., variable assignment 

through unification) such as: 

p = [Go(Grocery), Buy(Milk), Buy(Bananas), Go(HardwareStore),     

Buy(Drill), Go(Home)]
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Situation calculus: Blocks world

• A situation calculus rule for the blocks world:

– Clear (X, Result(A,S)) ↔

[Clear (X, S) ∧

(¬(A=Stack(Y,X) ∨ A=Pickup(X))

∨ (A=Stack(Y,X) ∧ ¬(holding(Y,S))

∨ (A=Pickup(X) ∧ ¬(handempty(S) ∧ ontable(X,S) ∧ clear(X,S))))]

∨ [A=Stack(X,Y) ∧ holding(X,S) ∧ clear(Y,S)]

∨ [A=Unstack(Y,X) ∧ on(Y,X,S) ∧ clear(Y,S) ∧ handempty(S)]

∨ [A=Putdown(X) ∧ holding(X,S)]

• English translation: A block is clear if (a) in the previous state it 

was clear and we didn’t pick it up or stack something on it 

successfully, or (b) we stacked it on something else successfully, 

or (c) something was on it that we unstacked successfully, or (d) 

we were holding it and we put it down.
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Situation calculus planning: Analysis

• This is fine in theory, but remember that problem solving 

(search) is exponential in the worst case

• Also, resolution theorem proving only finds a proof (plan), 

not necessarily a good plan

• So we restrict the language and use a special-purpose 

algorithm (a planner) rather than general theorem prover
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STRIPS planning

• STRIPS maintains two additional data structures:

– State List - all currently true predicates.

– Goal Stack - a push-down stack of goals to be solved, with current 

goal on top of stack.

• If current goal is not satisfied by present state, examine add 

lists of operators, and push operator and preconditions list 

on stack.  (Subgoals)

• When a current goal is satisfied, POP it from stack.

• When an operator is on top of the stack, record the 

application of that operator in the plan sequence and use the 

operator’s add and delete lists to update the current state.



25

Typical BW planning problem

Initial state:

clear(a)

clear(b)

clear(c)

ontable(a)

ontable(b)

ontable(c)

handempty

Goal:

on(b,c)

on(a,b)

ontable(c)

A BC

A

B

C

A plan:

pickup(b)

stack(b,c)

pickup(a)

stack(a,b)
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Another BW planning problem

Initial state:

clear(a)

clear(b)

clear(c)

ontable(a)

ontable(b)

ontable(c)

handempty

Goal:

on(a,b)

on(b,c)

ontable(c)

A BC

A

B

C

A plan:

pickup(a)

stack(a,b)

unstack(a,b)

putdown(a)

pickup(b)

stack(b,c)

pickup(a)

stack(a,b)
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Goal interaction

• Simple planning algorithms assume that the goals to be achieved are 

independent

– Each can be solved separately and then the solutions concatenated

• This planning problem, called the “Sussman Anomaly,” is the classic 

example of the goal interaction problem: 

– Solving on(A,B) first (by doing unstack(C,A), stack(A,B) will be undone when 

solving the second goal on(B,C) (by doing unstack(A,B), stack(B,C)).  

– Solving on(B,C) first will be undone when solving on(A,B)

• Classic STRIPS could not handle this, although minor modifications can 

get it to do simple cases

A B

C

Initial state

A

B

C

Goal state
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Sussman Anomaly

A B

C
Initial state

Goal state

Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)]

|Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty]

||Achieve clear(a) via unstack(_1584,a) with preconds: 

[on(_1584,a),clear(_1584),handempty]

||Applying unstack(c,a) 

||Achieve handempty via putdown(_2691) with preconds: [holding(_2691)]

||Applying putdown(c) 

|Applying pickup(a) 

Applying stack(a,b) 

Achieve on(b,c) via stack(b,c) with preconds: [holding(b),clear(c)]

|Achieve holding(b) via pickup(b) with preconds: [ontable(b),clear(b),handempty]

||Achieve clear(b) via unstack(_5625,b) with preconds: 

[on(_5625,b),clear(_5625),handempty]

||Applying unstack(a,b) 

||Achieve handempty via putdown(_6648) with preconds: [holding(_6648)]

||Applying putdown(a) 

|Applying pickup(b) 

Applying stack(b,c) 

Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)]

|Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty]

|Applying pickup(a) 

Applying stack(a,b) 

From 

[clear(b),clear(c),ontable(a),ontable(b),on

(c,a),handempty]

To [on(a,b),on(b,c),ontable(c)]

Do:

unstack(c,a)

putdown(c)

pickup(a)

stack(a,b)

unstack(a,b)

putdown(a)

pickup(b)

stack(b,c)

pickup(a)

stack(a,b)

A

B

C
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State-space planning

• We initially have a space of situations (where you are, what 

you have, etc.)

• The plan is a solution found by “searching” through the 

situations to get to the goal

• A progression planner searches forward from initial state 

to goal state

• A regression planner searches backward from the goal

– This works if operators have enough information to go both ways

– Ideally this leads to reduced branching: the planner is only 

considering things that are relevant to the goal



• Progression planners

– forward state-space search

– consider the effect of all possible actions in a given state

• Regression planners 

– backward state-space search

– Determine what must have been true in the previous state in order to 

achieve the current state

State-space planning



Progression algorithm

• Formulation as state-space search problem:
– Initial state and goal test: obvious

– Successor function: generate from applicable actions

– Step cost = each action costs 1

• Any complete graph search algorithm is a complete 
planning algorithm.
– E.g. A*

• Inherently inefficient: 
– (1) irrelevant actions lead to very broad search tree

– (2) good heuristic required for efficient search



Regression algorithm

• How to determine predecessors?
– What  are the states from which applying a given action leads to the 

goal?

Goal state = At(C1, B) ∧ At(C2, B) ∧ … ∧ At(C20, B)

Relevant action for first conjunct: Unload(C1,p,B)

Works only if pre-conditions are satisfied.

Previous state= In(C1, p) ∧ At(p, B) ∧ At(C2, B) ∧ … ∧ At(C20, B)

Subgoal At(C1,B) should not be present in this state.

• Actions must not undo desired literals (consistent)

• Main advantage: only relevant actions are considered.
– Often much lower branching factor than forward search.



Regression algorithm

• General process for predecessor construction
– Give a goal description G

– Let A be an action that is relevant and consistent

– The predecessors are as follows:

• Any positive effects of A that appear in G are deleted.

• Each precondition literal of A is added , unless it already appears.

• Any standard search algorithm can be added to perform the 
search.

• Termination when predecessor satisfied by initial state.

– In FO case, satisfaction might require a substitution.



Heuristics for state-space search

• Neither progression or regression are very efficient without 

a good heuristic.

– How many actions are needed to achieve the goal?

– Exact solution is NP hard, find a good estimate 

• Two approaches to find admissible heuristic:

– The optimal solution to the relaxed problem.

• Remove all preconditions from actions

– The subgoal independence assumption:

The cost of solving a conjunction of subgoals is approximated by the sum of the 

costs of solving the subproblems independently.



Planning heuristics

• Just as with search, we need an admissible heuristic that we 

can apply to planning states

– Estimate of the distance (number of actions) to the goal

• Planning typically uses relaxation to create heuristics

– Ignore all or selected preconditions 

– Ignore delete lists (movement towards goal is never undone)

– Use state abstraction (group together “similar” states and treat them 

as though they are identical) – e.g., ignore fluents

– Assume subgoal independence (use max cost; or if subgoals actually 

are independent, can sum the costs)

– Use pattern databases to store exact solution costs of recurring

subproblems

35



Forward search explores irrelevant 

actions 


