Knowledge Representation and Reasoning
Chapters 12.1-12.6

Prof. Laura Zavala, laura.zavala@umbc.edu, ITE 373, 410-455-8775
Introduction

- Real knowledge representation and reasoning systems come in several major varieties.
- These differ in their intended use, expressivity, features,…
- Some major families are
 - Logic programming languages
 - Theorem provers
 - Rule-based or production systems
 - Semantic networks
 - Frame-based representation languages
 - Databases (deductive, relational, object-oriented, etc.)
 - Constraint reasoning systems
 - Description logics
 - Bayesian networks
 - Evidential reasoning
Ontologies

- Specification of a conceptualization
- Representations of concepts
- Explicit formal specifications of the terms in the domain and relations among them
- Usually represented as a type hierarchy

Diagram:

```
Vehicle
  +--- Car
  +--- Truck
     +--- 2-wheel
     +--- 4-wheel
```
A more general ontology
Different levels

Upper Ontology:
- Thing
 - Vehicle
 - Landcraft
 - Sea Vessel
 - Aircraft
 - Airplane
 - Helicopter
 - Drone
 - Airliner
 - Fighter
 - Global Hawk
 - Predator
 - Boeing 747
 - Boeing 777
 - F/A-18C
 - F/A-22

Lower Ontology:

Upper Ontologies

- Highest-level categories: typically these might include:
 - Measurements
 - Objects and their properties (including fluent, or changing, properties)
 - Events and temporal relationships
 - Continuous processes
 - Mental events, processes; “beliefs, desires, and intentions”

- Also useful:
 - Subtype relationships
 - PartOf relationships
 - Composite objects
Upper ontology

- General purpose
- Applicable in any special-purpose domain
 - Extended with more specific concepts
- Bridge independent domains
- Attempts have been made to define a universal general-purpose ontology
- Several incompatible upper ontologies that attempt to represent all knowledge exist
 - CYC
An upper ontology: CYC
Why do we need an ontology

- To share common understanding of the structure of information among people or software agents
- To enable reuse of domain knowledge
- To make domain assumptions explicit
- To separate domain knowledge from the operational knowledge
 - We can merge, extend, and change
- To analyze domain knowledge
Ontological engineering

- How do you create an ontology for a particular application?
- How do you maintain an ontology for changing needs?
- How do you merge ontologies from different fields?
- How do you map across ontologies from different fields?
Reasoning systems for categories

- Categories are the primary building blocks of large-scale knowledge representation schemes.
- Semantic networks
 - Graphical aids
 - Infer properties of objects based on category membership
- Description Logics
 - Constructing and combining categories
 - Subset and superset relationships
Semantic Networks

- Simple representation scheme that uses a graph of labeled nodes and labeled, directed arcs to encode knowledge.
 - Usually used to represent static, taxonomic, concept dictionaries
- Typically used with a special set of accessing procedures that perform “reasoning”
 - e.g., inheritance of values and relationships
- Semantic networks were very popular in the ‘60s and ‘70s but are less frequently used today.
 - Often much less expressive than other KR formalisms
- The **graphical depiction** associated with a semantic network is a significant reason for their popularity.
Semantic Networks: example (1)

- SN allow representation of individual objects, categories of objects, and relations among objects.

![Semantic Network Diagram](image)

A semantic network with four objects (John, Mary, 1, and 2) and four categories. Relations are denoted by labeled links.
Nodes and Arcs

- Arcs define binary relationships that hold between objects denoted by the nodes.

\[
\text{mother(john,sue)} \\
\text{age(john,5)} \\
\text{wife(sue,max)} \\
\text{age(max,34)} \\
\ldots
\]
The ISA (is-a) or AKO (a-kind-of) relation is often used to link instances to classes, classes to superclasses.

Some links (e.g. hasPart) are inherited along ISA paths.

The semantics of a semantic net can be relatively informal or very formal:
- often defined at the implementation level
Only binary relations

- In FOL we can assert
 - \(\text{Fly}(\text{Shankar}, \text{NewYork}, \text{NewDelhi}, \text{Yesterday})\)

- In semantic networks the links between nodes represent only binary relations
Semantic Networks: example (2)

- A fragment of a semantic network showing the representation of the logical assertion
 \(\text{Fly}(\text{Shankar}, \text{New York}, \text{New Delhi}, \text{Yesterday})\).
Non-binary relationships can be represented by “turning the relationship into an object”

This is an example of what logicians call “reification”

- reify v : consider an abstract concept to be real

We might want to represent the generic give event as a relation involving three things: a giver, a recipient and an object, give(john, mary, book32)
Individuals and Classes

- Many semantic networks distinguish
 - nodes representing individuals and those representing classes
 - the “subclass” relation from the “instance-of” relation
Link Types

<table>
<thead>
<tr>
<th>Link Type</th>
<th>Semantics</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \subseteq B$</td>
<td>$A \subseteq B$</td>
<td>$Cats \subseteq Mammals$</td>
</tr>
<tr>
<td>$A \in B$</td>
<td>$A \in B$</td>
<td>$Bill \in Cats$</td>
</tr>
<tr>
<td>$R(A, B)$</td>
<td>$R(A, B)$</td>
<td>$Bill \leftarrow AB \rightarrow 12$</td>
</tr>
<tr>
<td>$\forall x ; x \in A \Rightarrow R(x, B)$</td>
<td>$\forall x ; x \in A \Rightarrow R(x, B)$</td>
<td>$Birds \leftarrow Leg \rightarrow 2$</td>
</tr>
<tr>
<td>$\forall x ; \exists y ; x \in A \Rightarrow y \in B \land R(x, y)$</td>
<td>$\forall x ; \exists y ; x \in A \Rightarrow y \in B \land R(x, y)$</td>
<td>$Birds \leftarrow Parent \rightarrow Birds$</td>
</tr>
</tbody>
</table>
Inference by Inheritance

- One of the main kinds of reasoning done in a semantic net is the inheritance of values along the subclass and instance links.
- Semantic networks differ in how they handle the case of inheriting multiple different values.
 - All possible values are inherited, *or*
 - Only the “lowest” value or values are inherited
Conflicting Inherited Values
Multiple Inheritance

- A node can have any number of superclasses that contain it, enabling a node to inherit properties from multiple “parent” nodes and their ancestors in the network.

- These rules are often used to determine inheritance in such “tangled” networks where multiple inheritance is allowed:
 - If $X<A<B$ and both A and B have property P, then X inherits A’s property.
 - If $X<A$ and $X<B$ but neither $A<B$ nor $B>Z$, and A and B have property P with different and inconsistent values, then X does not inherit property P at all.
Semantic Networks vs FOL

- Reification makes it possible to represent every ground, function-free atomic sentence of FOL in semantic networks.
- Some kinds of universally quantified sentences
- We still do not have:
 - Negation, disjunction, nested function symbols, and existential quantification.
- Semantic networks main advantages
 - Simplicity, transparency, and decidability of the inference procedure
Defaults and Overriding

- John has one leg

- A person is assumed to have two legs unless that default is overridden.
- In a strictly logical KB this would be a contradiction.
- Or we could have an exception:
 - $\forall x \ x \in \text{Persons} \land x \neq \text{John} \Rightarrow \text{Legs}(x,2)$
This was the classic example circa 1980.
From Semantic Nets to Frames

- Semantic networks morphed into Frame Representation Languages in the ‘70s and ‘80s.
- A frame is a lot like the notion of an object in OOP, but has more meta-data.
- A **frame** has a set of **slots**.
- A **slot** represents a relation to another frame (or value).
- A slot has one or more **facets**.
- A **facet** represents some aspect of the relation.
Facets

- A slot in a frame holds more than a value.
- Other facets might include:
 - current fillers (e.g., values)
 - default fillers
 - minimum and maximum number of fillers
 - type restriction on fillers (usually expressed as another frame object)
 - attached procedures (if-needed, if-added, if-removed)
 - salience measure
 - attached constraints or axioms
- In some systems, the slots themselves are instances of frames.
A frame-based knowledge base

Translation into first-order logic
Description Logics

- Describe definitions and properties of categories
- Two main inference tasks
 - **subsumption** (whether categories belong within other categories)
 - **classification** (checking whether an object belongs to a category)
 - finding the right place in a hierarchy of objects for a new description
- Current systems take care to keep the languages simple, so that all inference can be done in polynomial time (in the number of objects)
 - ensuring tractability of inference
- **CLASSIC** language is a typical description logic
Description Logics (2)

- More expressive than propositional logic
- More efficient decision problems than first order predicate logic
- DL are of particular importance in providing a logical formalism for Ontologies and the Semantic Web
Semantic Web

- A group of methods and technologies to allow machines to understand the meaning - or "semantics" - of information on the World Wide Web
 - Resource Description Framework (RDF)
 - Ontologies
 - Web Ontology Language (OWL)
 - Rule Engines or Systems (Forward Chaining and Backward Chaining)
 - SPARQL is a protocol and query language for semantic web data sources
Non-monotonic Reasoning

- In normal monotonic logic, adding more sentences to a KB only entails more conclusions.
 - if KB |- P then KB U {S} |- P

- Inheritance with exceptions is not monotonic (it is nonmonotonic)
 - Bird(Opus)
 - Fly(Opus)? Yes

 - Penguin(Opus)
 - Fly(Opus)? no
Non-monotonic Reasoning

- Nonmonotonic logics attempt to formalize such reasoning by allow **default rules** of the form:
 - If P and concluding Q is consistent, then conclude Q
 - If Bird(X) then if consistent Fly(x)
Abduction is a reasoning process that tries to form plausible explanations for abnormal observations.

- Abduction is distinctly different from deduction and induction.
- Abduction is inherently uncertain.

Uncertainty is an important issue in abductive reasoning.

Some major formalisms for representing and reasoning about uncertainty:

- Mycin’s certainty factors (an early representative)
- Probability theory (esp. Bayesian belief networks)
- Dempster-Shafer theory
- Fuzzy logic
- Truth maintenance systems
- Nonmonotonic reasoning
Abduction

- **Definition** (Encyclopedia Britannica): reasoning that derives an explanatory hypothesis from a given set of facts
 - The inference result is a hypothesis that, if true, could explain the occurrence of the given facts
- **Examples**
 - Dendral, an expert system to construct 3D structure of chemical compounds
 - Fact: mass spectrometer data of the compound and its chemical formula
 - KB: chemistry, esp. strength of different types of bounds
 - Reasoning: form a hypothetical 3D structure that satisfies the chemical formula, and that would most likely produce the given mass spectrum
Abduction examples (cont.)

- Medical diagnosis
 - Facts: symptoms, lab test results, and other observed findings (called manifestations)
 - KB: causal associations between diseases and manifestations
 - Reasoning: one or more diseases whose presence would causally explain the occurrence of the given manifestations
- Many other reasoning processes (e.g., word sense disambiguation in natural language process, image understanding, criminal investigation) can also been seen as abductive reasoning
Comparing Abduction, Deduction, and Induction

Deduction:
- Major premise: All balls in the box are black
- Minor premise: These balls are from the box
- Conclusion: These balls are black

Abduction:
- Rule: All balls in the box are black
- Observation: These balls are black
- Explanation: These balls are from the box

Induction:
- Case: These balls are from the box
- Observation: These balls are black
- Hypothesized rule: All balls in the box are black

Deduction reasons from causes to effects
Abduction reasons from effects to causes
Induction reasons from specific cases to general rules
Characteristics of Abductive Reasoning

- “Conclusions” are hypotheses, not theorems (may be false even if rules and facts are true)
 - E.g., misdiagnosis in medicine

- There may be multiple plausible hypotheses
 - Given rules A => B and C => B, and fact B, both A and C are plausible hypotheses
 - Abduction is inherently uncertain
 - Hypotheses can be ranked by their plausibility (if it can be determined)
Characteristics of Abductive Reasoning (cont.)

- Reasoning is often a hypothesize-and-test cycle
 - **Hypothesize**: Postulate possible hypotheses, any of which would explain the given facts (or at least most of the important facts)
 - **Test**: Test the plausibility of all or some of these hypotheses
 - One way to test a hypothesis H is to ask whether something that is currently unknown—but can be predicted from H—is actually true
 - If we also know $A \Rightarrow D$ and $C \Rightarrow E$, then ask if D and E are true
 - If D is true and E is false, then hypothesis A becomes more plausible (**support** for A is increased; **support** for C is decreased)
Characteristics of Abductive Reasoning (cont.)

- Reasoning is **non-monotonic**
 - That is, the plausibility of hypotheses can increase/decrease as new facts are collected
 - In contrast, deductive inference is **monotonic**: it never change a sentence’s truth value, once known
 - In abductive (and inductive) reasoning, some hypotheses may be discarded, and new ones formed, when new observations are made
Sources of Uncertainty

- **Uncertain inputs**
 - Missing data
 - Noisy data

- **Uncertain knowledge**
 - Multiple causes lead to multiple effects
 - Incomplete enumeration of conditions or effects
 - Incomplete knowledge of causality in the domain
 - Probabilistic/stochastic effects

- **Uncertain outputs**
 - Abduction and induction are inherently uncertain
 - Default reasoning, even in deductive fashion, is uncertain
 - Incomplete deductive inference may be uncertain
 - Probabilistic reasoning only gives probabilistic results (summarizes uncertainty from various sources)
Decision Making with Uncertainty

- **Rational** behavior:
 - For each possible action, identify the possible outcomes
 - Compute the **probability** of each outcome
 - Compute the **utility** of each outcome
 - Compute the probability-weighted (**expected** **utility**) over possible outcomes for each action
 - Select the action with the highest expected utility (principle of **Maximum Expected Utility**)

Note:
- The concept of expected utility is a fundamental principle in decision theory, where the expected utility of an action is the sum of the utilities of all possible outcomes, each multiplied by the probability of that outcome.
- This approach assumes that individuals have well-defined preferences over outcomes and that these preferences can be captured by a utility function.
- The principle of Maximum Expected Utility suggests that the best action is the one that maximizes expected utility.
Bayesian Reasoning

- Probability theory
- Bayesian inference
 - Use probability theory and information about independence
 - Reason diagnostically (from evidence (effects) to conclusions (causes)) or causally (from causes to effects)
- Bayesian networks
 - Compact representation of probability distribution over a set of propositional random variables
 - Take advantage of independence relationships
Other Uncertainty Representations

- Default reasoning
 - Nonmonotonic logic: Allow the retraction of default beliefs if they prove to be false

- Rule-based methods
 - Certainty factors (Mycin): propagate simple models of belief through causal or diagnostic rules

- Evidential reasoning
 - Dempster-Shafer theory: $\text{Bel}(P)$ is a measure of the evidence for P; $\text{Bel}(\neg P)$ is a measure of the evidence against P; together they define a belief interval (lower and upper bounds on confidence)

- Fuzzy reasoning
 - Fuzzy sets: How well does an object satisfy a vague property?
 - Fuzzy logic: “How true” is a logical statement?
Uncertainty Tradeoffs

- **Bayesian networks:** Nice theoretical properties combined with efficient reasoning make BNs very popular; limited expressiveness, knowledge engineering challenges may limit uses
- **Nonmonotonic logic:** Represent commonsense reasoning, but can be computationally very expensive
- **Certainty factors:** Not semantically well founded
- **Dempster-Shafer theory:** Has nice formal properties, but can be computationally expensive, and intervals tend to grow towards [0,1] (not a very useful conclusion)
- **Fuzzy reasoning:** Semantics are unclear (fuzzy!), but has proved very useful for commercial applications