Review: Agents/Search/CSP/Adversarial Search

Advanced Search

Distributed Constraint Satisfaction

Prof. Laura Zavala, laura.zavala@umbc.edu, ITE 373, 410-455-8775
AI Possible Approaches

Think

Like humans

GPS

Rational agents

Act

Eliza

Heuristic systems

AI tends to work mostly in this area
How do you design an intelligent agent?

- Definition: An intelligent agent perceives its environment via sensors and acts rationally upon that environment with its effectors.

- A discrete agent receives percepts one at a time, and maps this percept sequence to a sequence of discrete actions.

- Properties
 - Autonomous
 - Reactive to the environment
 - Pro-active (goal-directed)
 - Interacts with other agents via the environment
An ideal **rational agent** should, for each possible percept sequence, do whatever actions will maximize its expected performance measure based on

1. the percept sequence, and
2. its built-in and acquired knowledge.
Properties of Environments

- Fully observable/Partially observable
- Deterministic/Stochastic
- Episodic/Sequential
- Static/Dynamic
- Discrete/Continuous
- Single agent/Multi-agent

Fully observable + Deterministic ➔ no need to deal with uncertainty
Characteristics of environments

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Solitaire</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Backgammon</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Taxi driving</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Internet shopping</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Medical diagnosis</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

→ Lots of real-world domains fall into the hardest case!
A state space is a graph \((V, E)\) where \(V\) is a set of nodes and \(E\) is a set of arcs, and each arc is directed from a node to another node.

- **cost** of operators
- **successor nodes** (legal operators)
- **expanding** a node
- **goal test**
- **solution** (sequence of operators)
- **cost/length of a solution**

State-space search is the process of searching through a state space for a solution by making explicit a sufficient portion of an implicit state-space graph to find a goal node.
function general-search (problem, QUEUEING-FUNCTION)
;; problem describes the start state, operators, goal test, and operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or failure
nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
loop
 if EMPTY(nodes) then return "failure"
 node = REMOVE-FRONT(nodes)
 if problem.GOAL-TEST(node.STATE) succeeds
 then return node
 nodes = QUEUEING-FUNCTION(nodes, EXPAND(node, problem.OPERATORS))
end
;; Note: The goal test is NOT done when nodes are generated
;; Note: This algorithm does not detect loops
Key procedures to be defined

- **EXPAND**
 - Generate all successor nodes of a given node

- **GOAL-TEST**
 - Test if state satisfies all goal conditions

- **QUEUEING-FUNCTION**
 - Used to maintain a ranked list of nodes that are candidates for expansion
So far …

- **Uninformed search strategies**
 - No information about the likely “direction” of the goal node(s)
 - Breadth-first, depth-first, depth-limited, uniform-cost, depth-first iterative deepening, bidirectional

- **Informed search strategies (heuristic/best-first search)**
 - Use information about the domain to (try to) head in the general direction of the goal node(s)
 - Order nodes on the nodes list by increasing value of an evaluation function $f(n)$
 - Greedy search, beam search, A, A*

- **Local search / optimization problems**
 - No path to the goal
 - Hill-climbing algorithms, simulated annealing, local beam search, stochastic beam search, genetic algorithms, tabu search, online search

- **CSP**
 - *Set of variables* to which we have to assign *values* that satisfy a number of *problem-specific constraints*.
 - Generate and test, backtracking, constraint propagation (k-consistency), variable and value ordering heuristics (MRV, degree heuristic, LCV), forward checking, intelligent backtracking, local search for CSP

- **Adversarial Search**
 - Agents (players) need to consider the actions of other agents
 - Minimax, alpha-beta pruning, expectiminmax
Evaluating strategies

- **Completeness**
 - Guarantees finding a solution whenever one exists

- **Time complexity**
 - How long (worst or average case) does it take to find a solution?
 - Usually measured in terms of the number of nodes expanded

- **Space complexity**
 - How much space (memory) is used by the algorithm? Usually measured in terms of the maximum size of the “nodes” list during the search

- **Optimality/Admissibility**
 - If a solution is found, is it guaranteed to be an optimal one? That is, is it the one with minimum cost?
Breadth-First vs Depth-First (DFS)

Breadth-First
Exponential time and space $O(b^d)$
Optimal if costs are the same

Depth-First
Exponential time $O(b^d)$
Linear space $O(bd)$
May not terminate

Uniform-Cost (UCS)
complete and optimal

Iterative Deepening
solves the infinite-path problem
Best-first search is general search where the minimum-cost nodes (according to some measure) are expanded first.

- **Greedy search** uses minimal estimated cost $h(n)$ to the goal state as measure. This reduces the search time, but the algorithm is neither complete nor optimal.
- **A* search** combines uniform-cost search and greedy search: $f(n) = g(n) + h(n)$. A* handles state repetitions and $h(n)$ never overestimates.
 - A* is complete and optimal, but space complexity is high.
 - The time complexity depends on the quality of the heuristic function.
 - IDA* and SMA* reduce the memory requirements of A*.
Hill-climbing algorithms keep only a single state in memory, but can get stuck on local optima.

Simulated annealing escapes local optima, and is complete and optimal given a “long enough” cooling schedule.

Local beam search hill climbing but with the k best states.

Stochastic beam search keep a state with $p(h)$.

Genetic algorithms can search a large space by modeling biological evolution.

Tabu search local search but with a memory (k previously visited states).

Online search algorithms are useful in state spaces with partial/no information
 - Interleave computation and action (search some, act some)
Summary: CSP

- **CSP**
 - **Generate and test** Try each possible combination
 - **Backtracking** Depth first search (choosing unassigned variable)
 - **Constraint propagation** Using the constraints to reduce the number of legal values for a variable
 - **Variable and value ordering heuristics** Minimum remaining values, degree heuristic: largest # of constraints on unassigned vars, Least constraining value
 - **Forward checking** Keep track of remaining legal values for unassigned variables
 - **Intelligent backtracking** Better than chronological (jump to most recent assignment, track of incompatible val. assignments, track of conflicting vars.)
 - **Local search for CSP** Incomplete states; operators **reassign** variable values
 - **Distributed constraint satisfaction** Dif. agents control dif. subset of the constraint variables
Summary: Adversarial Search

- **Evaluation function** is used to evaluate the “goodness” of a game position.
- Game Trees
- Minimax
 - If it is **my turn** to move, then the root is labeled a "**MAX**" node; otherwise it is labeled a "**MIN**" node, indicating **my opponent's turn**.
 - Expand nodes down; “Back up” values
- Alpha-beta pruning
 - Don’t compute unnecessary nodes
- Expectiminimax (Games of chance)
 - Use minimax to compute values for MAX and MIN nodes
 - Use **expected values** for chance nodes
Advanced Search
Overview

- Real-time heuristic search
 - Learning Real-Time A* (LRTA*)
 - Minimax Learning Real-Time A* (Min-Max LRTA*)
- Genetic algorithms
REAL-TIME SEARCH
Real-Time Search

- Interleave search and execution

- Advantages:
 - Provide variable control over amount of search (deliberation) vs. execution (reactivity)
 - Improves performance over successive trials of the same problem: learn to improve quality of heuristic function
 - Can solve very large problems (if they have the right problem structure)
 - Short planning time per move (ind. of # states)
LRTA*

- **Simplest version: one step lookahead with heuristic-value updating:**
 1. Initialize s to the start state
 2. If s is a goal state, stop
 3. Choose an action a that minimizes $f(succ(s,a))$
 4. Update $f(s)$ to the max of current $f(s)$, $1+f(succ(s,a))$
 5. Execute action a
 6. Set s to the current state
 7. Go to step 2
What will each algorithm do?
- Greedy search (with and without repeated states)
- A* (with and without repeated states)
- Hill-climbing
- (One-step-lookahead) LRTA*

\[f(n): 1 \quad 1 \quad 2 \quad 1 \quad 0 \]

\[S \quad A \quad B \quad C \quad G \]

\[D \]

\[0 \]
Min-Max LRTA*

- Variation of LRTA* that can be used in nondeterministic domains: the agent is not able to predict with certainty which successor state an action execution results in

- Simulated robot-navigation tasks in mazes
 1. Initialize \(s \) to the start state
 2. If \(s \) is a goal state, stop
 3. Choose an action \(a \) whose worst possible outcome minimizes \(f(\text{succ}(s,a)) \) \((\text{minimax step})\)
 4. Update \(f(s) \) to the max of current \(f(s) \), \(1 + f(\text{succ}(s,a)) \) \((\text{across all possible successors of } s \text{ when performing } a)\)
 5. Execute action \(a \)
 6. Set \(s \) to the current state
 7. Go to step 2
Incremental Heuristic Search

- Reuse information gathered during A* to improve future searches

- Variations:
 - Failure → restart search at the point where the search failed
 - Failure → update h-values and restart search
 - Failure → update g-values and restart search

- Fringe Saving A*, Adaptive A*, Lifelong Planning A*, DLite*...
GENETIC ALGORITHMS
Genetic Algorithms

- Active area of research. Many applications. Annual conferences and workshops
- Probabilistic search/optimization algorithm
- Mimic the process of natural evolution
- Start with k random states (the *initial population*)
- Generate new states by “mutating” a single state or “reproducing” (combining via crossover) two parent states
- Selection mechanism based on children’s *fitness* values
Each variable or attribute is typically encoded as an integer value
 - Number of values determines the granularity of encoding of continuous attributes
For problems with more complex relational structure:
 - Encode each aspect of the problem
 - Constrain mutation/crossover operators to only generate legal offspring
Genetic Algorithms (2)

- Encoding used for the “genome” of an individual strongly affects the behavior of the search.
- Most effective in situations, for which a well-defined problem offers a compact encoding of all necessary solution parameters.
Genetic algorithms: Example

- Fitness function: number of non-attacking pairs of queens
 - $\text{min} = 0$, $\text{max} = 8 \times 7/2 = 28$
Genetic algorithms: Example (2)

Fitness-based stochastic selection:

- P(24748552) = 24/(24+23+20+11) = 31%
- P(32752411) = 23/(24+23+20+11) = 29%
Design a genetic algorithm to find a perfect Tic-Tac-Toe strategy, which never loses a game it plays.
Encoding

- **Binary Encoding**
 - 101100101100101011100101
 - 111111100000110000011111

- **Permutation Encoding**
 - 1 5 3 2 6 4 7 9 8
 - 8 5 6 7 2 3 1 4 9

- **Value Encoding**
 - 1.2324 5.3243 0.4556 2.3293 2.4545
 - BABDJEIFJDHDIERJFDLDFLFEVT
 - (back), (back), (right), (forward), (left)

- **Tree Encoding**

Selection Mechanisms

- **Proportionate selection:** Each offspring should be represented in the new population proportionally to its fitness
 - Roulette wheel selection (stochastic sampling): Random sampling, with fitness-proportional probabilities. Better individuals get higher chance
 - Deterministic sampling: Exact numbers of offspring (rounding up for most-fit individuals; rounding down for “losers”)

- **Tournament selection:** Offspring compete against each other in a series of competitions
 - Particularly useful when fitness can’t be readily measured (e.g., genetically evolving game-playing algorithms or RoboCup players)
GA: Crossover

- Selecting parents: Pick pairs at random, or fitness-biased selection (e.g., using a Boltzmann distribution)

- One-point crossover (swap at same point in each parent)
- Two-point crossover
- Cut and splice (cut point could be different in the two parents)
- Bitwise crossover (“uniform crossover”)

- Many specialized crossover methods for specific problem types and representation choices
GA: Mutation

- Bitwise ("single point") mutation
- Order changing - two numbers are selected and exchanged
- Adding a small number (for real value encoding)
- Change selected nodes (tree representation)
GA: When to Stop?

- After a fixed number of generations
- When a certain fitness level is reached
- When fitness variability drops below a threshold
- ...

...
Running a GA involves many parameters:
- Population size
- Crossover rate
- Mutation rate
- Number of generations
- Target fitness value
- ...
Exercise

- Design a genetic algorithm to find a perfect Tic-Tac-Toe strategy, which never loses a game it plays.
- “On the Genetic Evolution of a Perfect Tic-Tac-Toe Strategy”, Gregor Hochmuth, Stanford University

DISTRIBUTED CONSTRAINT SATISFACTION
Distributed Constraint Satisfaction

- Looks at solving CSP when there is a collection of agents, each of which controls a subset of the constraint variables.

- Active area of research; annual workshops.
Why multiple agents?

- Agents have limited rationality
 - search is often intractable
 - may not have a complete picture of the problem
 - may not have the required computational capability
- Agents may be self interested
DCSP: Approach

- If we represent the search problem as a graph, we can solve it by accumulating local computations for each node in the graph
 - Local computations can be executed asynchronously and concurrently

http://www.cis.udel.edu/~kamboj
Asynchronous Backtracking

- The processes are priority ordered (by the alphabetical order of the variable identifiers)
- Each process chooses an assignment and communicates it to the neighboring processes (ok message)
- Each process maintains the current value of other processes from its viewpoint (local view)
 - A value assignment is changed if it is not consistent with the assignments of the higher priority processes
 - If no values are consistent with the higher priority processes, then the process creates a nogood message and sends it to the higher priority processes
- All agents wait for and respond to messages
Asynchronous Backtracking

Example

\[x_1, x_2, x_3 \{\text{red, blue, green}\} \]
\[x_1 \neq x_3, x_2 \neq x_3, \]

\[(\text{ok? (}x_1, \text{ red})\) \]
\[(\text{ok? (}x_2, \text{ blue})\) \]

\[\{(x_1=\text{red}), (x_2=\text{blue})\} \]
Asynchronous Backtracking

Example 2

Local view: \{ (x_1, 1), (x_2, 2) \}

Diagram:

\(X_1 \{1,2\} \) \(X_3 \{1,2\} \) \(X_2 \{2\} \)

\((\text{ok?}, (x_1, 1)) \) \(\neq \) \(\neq \)

\((\text{ok?}, (x_2, 2)) \)
Asynchronous Backtracking

Example 2

Add neighbor, and get value requests

Local view: \{(x_1,1)\}

(nogood, \{(x_1,1),(x_2,2)\})
Asynchronous Backtracking

Example 2

\[
\begin{align*}
X_1 & \quad \{1,2\} \\
X_2 & \quad \{2\} \\
X_3 & \quad \{1,2\}
\end{align*}
\]

\((\text{nogood},\{(x_1,1)\})\)
Asynchronous Weak-Commitment

- Asynchronous backtracking
 - Process priorities are statically determined
 - Higher priority processes can make a poor value assignment resulting in the lower level process having to do a long search in order to reverse the higher level process’ decision
- An improved alternative: AWC
Asynchronous Weak-Commitment (2)

- AWC allows dynamic reordering of the process priorities so that a bad decision can be revised without an exhaustive search.
- Use a value ordered heuristic
 - i.e. min-conflict heuristic – minimize the number of constraints violations.
DCS: Algorithms

- 1992—Asynchronous Backtracking (ABT), -static ordering, complete
- 1994—Asynchronous Weak-Commitment (AWC), -reordering, fast, complete (only with exponential space)
- 1995—Distributed Breakout Algorithm (DBA), -incomplete but fast
- 2000—Distributed Forward Chaining (DFC), -slow, comparable to ABT
- 2000—Asynchronous Aggregation Search (AAS), -aggregation of values in ABT
- 2001—Maintaining Asynchronously Consistencies (DMAC), -the fastest algorithm
- 2001—Asynchronous Backtracking with Reordering (ABTR), -reordering in ABT with bounded nogoods
- 2002—Secure Computation with Semi-Trusted Servers, -security increases with the number of trustworthy servers
- 2003—Secure Multiparty Computation For Solving DisCSPs (MPC-DisCSP1-MPC-DisCSP4), secure if 1/2 of the participants are trustworthy

Also ...

- You can check my implementation of the Asynchronous Weak-Commitment Search for the n-queens problem:

- Or other implementations - Graph Coloring, asynchronous backtracking:
 - http://jmvidal.cse.sc.edu/netlogomas/ABTgc.html