Algorithms for CSPs

- Backtracking (systematic search)
- Constraint propagation (k-consistency)
- Variable and value ordering heuristics
- Intelligent backtracking
Constraint satisfaction - Overview

- Powerful problem-solving paradigm
 - View a problem as a set of variables to which we have to assign values that satisfy a number of problem-specific constraints.
 - Constraint programming, constraint satisfaction problems (CSPs), constraint logic programming...
Informal example: Map coloring

- Color the following map using three colors (red, green, blue) such that no two adjacent regions have the same color.

```
+-------+
<table>
<thead>
<tr>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>C</td>
</tr>
</tbody>
</table>
+-------+
```
Map coloring II

- Variables: A, B, C, D, E all of domain RGB
- Domains: RGB = \{red, green, blue\}
- Constraints: A ≠ B, A ≠ C, A ≠ E, A ≠ D, B ≠ C, C ≠ D, D ≠ E
- One solution: A=red, B=green, C=blue, D=green, E=blue
Map-Coloring - Australia

- **Variables** WA, NT, Q, NSW, V, SA, T
- **Domains** $D_i = \{\text{red, green, blue}\}$
- **Constraints**: adjacent regions must have different colors
- e.g., $WA \neq NT$, or (WA, NT) in $\{(\text{red, green}), (\text{red, blue}), (\text{green, red}), (\text{green, blue}), (\text{blue, red}), (\text{blue, green})\}$
Map-Coloring - Australia

- Solutions are complete and consistent assignments, e.g., WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green
Why formulate (problems) using CSP?

- CSPs yield a natural representation for a wide variety of problems
- Easier to use an existing CSP-solving system than designing custom solution using another search technique
Informal definition of CSP

- CSP = Constraint Satisfaction Problem
- Given
 - (1) a finite set of variables
 - (2) each with a domain of possible values (often finite)
 - (3) a set of constraints that limit the values the variables can take on
- A solution is an assignment of a value to each variable such that the constraints are all satisfied.
- Tasks might be to decide if a solution exists, to find a solution, to find all solutions, or to find the “best solution” according to some metric (objective function).
Example: SATisfiability

- Given a set of propositions containing variables, find an assignment of the variables to \{false, true\} that satisfies them.

- For example, the clauses:
 - \((A \lor B \lor \neg C) \land (\neg A \lor D)\)
 - (equivalent to \((C \rightarrow A) \lor (B \land D \rightarrow A)\)

 are satisfied by
 - \(A = false\)
 - \(B = true\)
 - \(C = false\)
 - \(D = false\)
Formal definition of a constraint network (CN)

A constraint network (CN) consists of

- a set of variables \(X = \{x_1, x_2, \ldots, x_n\} \)
 - each with an associated domain of values \(\{d_1, d_2, \ldots, d_n\} \).
 - the domains are typically finite

- a set of constraints \(\{c_1, c_2, \ldots, c_m\} \) where
 - each constraint defines a predicate which is a relation over a particular subset of \(X \).
 - e.g., \(C_i \) involves variables \(\{X_{i1}, X_{i2}, \ldots, X_{ik}\} \) and defines the relation \(R_i \subseteq D_{i1} \times D_{i2} \times \ldots \times D_{ik} \)

- **Unary** constraint: only involves one variable
- **Binary** constraint: only involves two variables
Instantiations

- An instantiation of a subset of variables S is an assignment of a value in its domain to each variable in S
- An instantiation is *legal* iff it does not violate any constraints.

A solution is an instantiation of all of the variables in the network.
Real-world problems

- Scheduling
- Temporal reasoning
- Building design
- Planning
- Optimization/satisfaction
- Vision
- Graph layout
- Network management
- Natural language processing
- Molecular biology / genomics
- VLSI design
Typical tasks for CSP

- **Solutions:**
 - Does a solution exist?
 - Find one solution
 - Find all solutions
 - Given a partial instantiation, do any of the above

- Transform the CN into an equivalent CN that is easier to solve.
A **binary CSP** is a CSP in which all of the constraints are binary or unary.

Any non-binary CSP can be converted into a binary CSP by introducing additional variables.
A binary CSP can be represented as a **constraint graph**, which has a node for each variable and an arc between two nodes if and only if there is a constraint involving the two variables.
Example: Sudoku

```
3 1 1
1 4
3 4 1 2
3 4
```
Running example: Sudoku

- Variables and their domains
 - v_{ij} is the value in the jth cell of the ith row
 - $D_{ij} = D = \{1, 2, 3, 4\}$

- Blocks:
 - $B_1 = \{11, 12, 21, 22\}$… $B_4 = \{33, 34, 43, 44\}$

- Constraints (implicit/intensional)
 - $C^R: \forall i, \cup_j v_{ij} = D$ (every value appears in every row)
 - $C^C: \forall j, \cup_i v_{ij} = D$ (every value appears in every column)
 - $C^B: \forall k, \cup (v_{ij} \mid ij \in B_k) = D$ (every value appears in every block)
 - Alternative representation: pairwise inequality constraints:
 - $I^R: \forall i, j \neq j': v_{ij} \neq v_{ij'}$ (no value appears twice in any row)
 - $I^C: \forall j, i \neq i': v_{ij} \neq v_{i'j}$ (no value appears twice in any column)
 - $I^B: \forall k, ij \in B_k, i'j' \in B_k, ij \neq i'j' : v_{ij} \neq v_{i'j'}$ (no value appears twice in any block)

- Advantage of the second representation: all binary constraints!

<table>
<thead>
<tr>
<th></th>
<th>v_{11}</th>
<th>3</th>
<th>v_{13}</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_{21}</td>
<td>1</td>
<td>v_{23}</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>v_{41}</td>
<td>v_{42}</td>
<td>4</td>
<td>v_{44}</td>
<td></td>
</tr>
</tbody>
</table>
Sudoku constraint network

<table>
<thead>
<tr>
<th>v_{11}</th>
<th>3</th>
<th>v_{13}</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_{21}</td>
<td>1</td>
<td>v_{23}</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>v_{41}</td>
<td>v_{42}</td>
<td>4</td>
<td>v_{44}</td>
</tr>
</tbody>
</table>

![Graph representation of Sudoku constraint network](image-url)
Solving constraint problems

- Systematic search
 - Generate and test
 - Backtracking
- Variable ordering heuristics
- Value ordering heuristics
- Constraint propagation (consistency)
- Backjumping and dependency-directed backtracking
Try each possible combination until you find one that works:

- green – red – green – red – green
- green – red – green – red – blue
- green – red – green – red – red
- ...

- Doesn’t check constraints until all variables have been instantiated
- Very inefficient way to explore the space of possibilities
Backtracking (a.k.a. depth-first search!)

- Consider the variables in some order
- Pick an unassigned variable and give it a provisional value such that it is consistent with all of the constraints
- If no such assignment can be made, we’ve reached a dead end and need to backtrack to the previous variable
- Continue this process until a solution is found or we backtrack to the initial variable and have exhausted all possible values
Backtracking search

function BACKTRACKING-Search(csp) returns a solution, or failure
 return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns a solution, or failure
 if assignment is complete then return assignment
 var ← SELECT-UNASSIGNED-VARIABLE(Variables[csp], assignment, csp)
 for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
 if value is consistent with assignment according to Constraints[csp] then
 add \{ var = value \} to assignment
 result ← RECURSIVE-BACKTRACKING(assignment, csp)
 if result ≠ failure then return result
 remove \{ var = value \} from assignment
 return failure
Backtracking example
Backtracking example
Backtracking example
Backtracking example
Improving backtracking efficiency

- General-purpose methods can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
Problems with backtracking

- Inefficiency: can explore areas of the search space that aren’t likely to succeed
 - Variable and value ordering can help
- Thrashing: keep repeating the same failed variable assignments
 - Consistency checking can help
 - Intelligent backtracking schemes can also help
Variable and value ordering

- Minimum remaining values (variables)
 - fewest legal values
- Degree heuristic (variables)
 - largest number of constraints on other unassigned variables
 - reduces branching factor
- Least constraining value (values)
 - rules out the fewest choices for neighboring vars
Using the constraints to reduce the number of legal values for a variable, which in turn reduces the number of legal values for another variable, and so on.
Consistency

- Node consistency
 - A node X is **node-consistent** if every value in the domain of X is consistent with X’s unary constraints
 - A graph is node-consistent if all nodes are node-consistent
Arc consistency

- An arc \((X, Y)\) is **arc-consistent** if, for every value \(x\) of \(X\), there is a value \(y\) for \(Y\) that satisfies the constraint represented by the arc.
- A graph is arc-consistent if all arcs are arc-consistent.

To create arc consistency, we perform **constraint propagation**: that is, we repeatedly reduce the domain of each variable to be consistent with its arcs.
Arc consistency algorithm AC-3

\begin{function}
\textbf{function} AC-3\(\text{csp} \) \textbf{returns} the CSP, possibly with reduced domains
\textbf{inputs:} csp, a binary CSP with variables \(\{X_1, X_2, \ldots, X_n\} \)
\textbf{local variables:} queue, a queue of arcs, initially all the arcs in csp

\textbf{while} queue is not empty do
\quad \((X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue) \)
\quad \textbf{if} RM-INCONSISTENT-VALUES\((X_i, X_j) \) \textbf{then}
\quad \quad \textbf{for each} \(X_k \) \textbf{in} Neighbors\([X_i] \) \textbf{do}
\quad \quad \quad add \((X_k, X_i) \) \textbf{to} queue
\end{function}

\begin{function}
\textbf{function} RM-INCONSISTENT-VALUES\((X_i, X_j) \) \textbf{returns} true iff remove a value
\textbf{removed} \leftarrow false
\textbf{for each} \(x \) \textbf{in} \text{DOMAIN}\[X_i]\textbf{ do}
\quad \textbf{if} no value \(y \) \textbf{in} \text{DOMAIN}\[X_j]\textbf{ allows} \((x,y) \) \textbf{to satisfy} constraint\((X_i, X_j) \)
\quad \textbf{then} delete \(x \) \textbf{from} \text{DOMAIN}\[X_i]\textbf{;} \textbf{removed} \leftarrow true
\textbf{return} removed
\end{function}

- Time complexity: \(O(n^2d^3) \)
Constraint propagation: Sudoku

\[v_{11} \quad 3 \quad v_{13} \quad 1 \]
\[v_{21} \quad 1 \quad v_{23} \quad 4 \]
\[3 \quad 4 \quad 1 \quad 2 \]
\[v_{41} \quad v_{42} \quad 4 \quad v_{44} \]

...and we didn’t even need to search!
K-consistency

- K-consistency generalizes the notion of arc consistency to sets of more than two variables.
 - A graph is K-consistent if, for legal values of any K-1 variables in the graph, and for any Kth variable V_k, there is a legal value for V_k.
- Strong K-consistency = J-consistency for all $J \leq K$
- Node consistency = strong 1-consistency
- Arc consistency = strong 2-consistency
- Path consistency = strong 3-consistency
Why do we care?

1. If we have a CSP with N variables that is known to be strongly N-consistent, we can solve it without backtracking.

2. For any CSP that is strongly K-consistent, if we find an appropriate variable ordering (one with “small enough” branching factor), we can solve the CSP without backtracking.
Forward checking

- **Idea:**
 - Interleaving search and inference of reductions in the domain of the variables
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values
Forward checking

- Idea:
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values

```
WA  NT  Q  NSW  V  SA  T
[Red] [Green] [Blue] [Green] [Blue] [Green] [Blue] [Green] [Blue] [Green] [Blue] [Green] [Blue] [Green] [Blue]
[Red] [Green] [Blue] [Green] [Blue] [Green] [Blue] [Green] [Blue] [Green] [Blue] [Green] [Blue] [Green] [Blue]
```

Forward checking

- **Idea:**
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values
Forward checking

- **Idea:**
 - Keep track of remaining legal values for unassigned variables
 - Terminate search when any variable has no legal values
A **constraint tree** rooted at V_1 satisfies the following property:
- There exists an ordering V_1, \ldots, V_n such that every node has zero or one parents (i.e., each node only has constraints with at most one “earlier” node in the ordering)
- Also known as an *ordered constraint graph with width 1*

If this constraint tree is also **node- and arc-consistent** (a.k.a. *strongly 2-consistent*), then it can be solved **without backtracking**

(More generally, if the ordered graph is strongly k-consistent, and has width $w < k$, then it can be solved without backtracking.)
Proof sketch for constraint trees

- Perform backtracking search in the order that satisfies the constraint tree condition
- Every node, when instantiated, is constrained only by at most one previous node
- Arc consistency tells us that there must be at least one legal instantiation in this case
 - (If there are no legal solutions, the arc consistency procedure will collapse the graph – some node will have no legal instantiations)
- Keep doing this for all n nodes, and you have a legal solution – without backtracking!
Backtrack-free CSPs: Proof sketch

- Given a strongly k-consistent OCG, G, with width $w < k$:
 - Instantiate variables in order, choosing values that are consistent with the constraints between V_i and its parents
 - Each variable has at most w parents, and k-consistency tells us we can find a legal value consistent with the values of those w parents

- Unfortunately, achieving k-consistency is hard (and can increase the width of the graph in the process!)

- Fortunately, 2-consistency is relatively easy to achieve, so constraint trees are easy to solve

- Unfortunately, many CGs have width greater than one (that is, no equivalent tree), so we still need to improve search
So what if we don’t have a tree?

- Answer #1: Try **interleaving** constraint propagation and backtracking
- Answer #2: Try using **variable-ordering** heuristics to improve search
- Answer #3: Try using **value-ordering** heuristics during variable instantiation
- Answer #4: See if **iterative repair** works better
- Answer #5: Try using **intelligent backtracking** methods
Intelligent backtracking

- Backtracking search is chronological backtracking

- **Backjumping:**
 - Jumps to the most recent assignment in the conflict set
 - If V_j fails, jump back to the variable V_i with greatest i such that the constraint (V_i, V_j) fails (i.e., most recently instantiated variable in conflict with V_i)
Intelligent backtracking

- **Backchecking**: keep track of incompatible value assignments computed during backjumping
- **Backmarking**: keep track of which variables led to the incompatible variable assignments for improved backchecking
Local search for CSPs

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned.

- To apply to CSPs:
 - allow states with unsatisfied constraints
 - operators **reassign** variable values

- Variable selection: randomly select any conflicted variable

- Value selection by **min-conflicts** heuristic:
 - choose value that violates the fewest constraints
 - i.e., hill-climb with $h(n) = \text{total number of violated constraints}$
Local search for CSPs

- **Min-conflicts**: Select new values that minimally conflict with the other variables
 - Use in conjunction with hill climbing or simulated annealing or...

- **Local maxima strategies**
 - Random restart
 - Random walk
 - Tabu search: don’t try recently attempted values
Example: 4-Queens

- **States**: 4 queens in 4 columns \((4^4 = 256 \text{ states}) \)
- **Actions**: move queen in column
- **Goal test**: no attacks
- **Evaluation**: \(h(n) = \text{number of attacks} \)

Given random initial state, can solve \(n \)-queens in almost constant time for arbitrary \(n \) with high probability (e.g., \(n = 10,000,000 \))
Min-conflicts heuristic

- Iterative repair method
 1. Find some “reasonably good” initial solution
 - E.g., in N-queens problem, use greedy search through rows, putting each queen where it conflicts with the smallest number of previously placed queens, breaking ties randomly
 2. Find a variable in conflict (randomly)
 3. Select a new value that minimizes the number of constraint violations
 - O(N) time and space
 4. Repeat steps 2 and 3 until done

- Performance depends on quality and informativeness of initial assignment; inversely related to distance to solution
Some challenges for constraint reasoning

- What if not all constraints can be satisfied?
 - Hard vs. soft constraints
 - Degree of constraint satisfaction
 - Cost of violating constraints

- What if constraints are of different forms?
 - Symbolic constraints
 - Numerical constraints [constraint solving]
 - Temporal constraints
 - Mixed constraints
Some challenges for constraint reasoning II

- What if constraints are represented intensionally?
 - Cost of evaluating constraints (time, memory, resources)
- What if constraints, variables, and/or values change over time?
 - Dynamic constraint networks
 - Temporal constraint networks
 - Constraint repair
- What if you have multiple agents or systems involved in constraint satisfaction?
 - Distributed CSPs
 - Localization techniques
Distributed Constraint Satisfaction

- Looks at solving CSP when there is a collection of agents, each of which controls a subset of the constraint variables.

- Active area of research; annual conferences and workshops.
Thanks for coming -- see you next Tuesday!