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Lisp

Lisp is worth learning for the profound 

enlightenment experience you will have when 

you finally get it; that experience will make 

you a better programmer for the rest of your 

days, even if you never actually use Lisp itself 

a lot. 

Graham article



Why Lisp?

• Because it’s the most widely used AI 
programming language

• Because it’s good for writing production 
software (Graham article)

• Because it’s got lots of features other languages 
don’t

• Because you can write new programs and 
extend old programs really, really quickly in 
Lisp



Why All Those Parentheses?

• Lisp syntax: parenthesized prefix notation

• Surprisingly readable if you indent properly 

• Makes prefix notation manageable

• An expression is an expression is an expression, 

whether it’s inside another one or not

� (+ 1 2)

� (* (+ 1 2) 3)

� (list (* 3 5) 'atom '(list inside a list) 

(list 3 4) '(((very) (very) (very) (nested 
list))))



Cool Things About Lisp

• Functions as objects (pass a function as an 

argument)

• Lambda expressions (construct a function on 

the fly)

• Lists as first-class objects

• Program as data

• Macros (smart expansion of expressions)

• Symbol manipulation



Functional Programming

• Decomposes a problem into a set of functions

• Functions only take inputs and produce 

outputs, and don't have any internal state 

(global and local variables) that affects the 

output produced for a given input

• Recursion is a natural way of thinking in 

functional programming languages

• Truly functional programs are highly 

parallelizable



Basic Lisp Types

�NIL and T

� Symbols
� ‘a  ‘x  ‘marie

�Numbers
� 27  -2  7.519

�Lists
� ‘(a b c)  ‘(2 3 marie)

� Strings
� “This is a string!”

�Characters
� #\x  #\- #\B



Basic Lisp Functions

• Numeric functions: + - * / incf decf

• List access: car (first), second … tenth, nth, 

cdr (rest), last, length

• List construction: cons, append, list

• Advanced list processing: assoc, mapcar, 
mapcan

• Predicates: listp, numberp, stringp, atom, 
null, equal, eql, and, or, not

• Special forms: setq/setf, quote, defun, if, 
cond, case, progn, loop



MapReduce

• Without understanding functional 

programming, you can't invent 

MapReduce, the algorithm that makes 

Google so massively scalable. 

• The terms Map and Reduce come from 

Lisp and functional programming. 



Useful help facilities

• (apropos ‘str) → list of symbols whose name 

contains ‘str

• (describe ‘symbol) → description of symbol

• (describe #’fn) → description of function

• (trace fn) → print a trace of fn as it runs

• (print “string”) → print output

• (format …) → formatted output (see Norvig p. 84)

• :a → abort one level out of debugger



Great! How Can I Get Started?

• On sunserver or linux server (CS), run 

/usr/local/bin/clisp

• From http://clisp.cons.org you can 

download CLISP for your own PC 

(Windows or Linux)

• Great Lisp resource page: 

http://www.apl.jhu.edu/~hall/lisp.html



Remember to subscribe!

�Course mailing list: cps-cmsc671@lists.umbc.edu

� Visit http://lists.umbc.edu

� Search for cps-cmsc671

� Click “Subscribe” link



Building goal-based agents

To build a goal-based agent we need to answer the 

following questions:

� What is the goal to be achieved?

� What are the actions?

� What relevant information is necessary to encode in 

order to describe the state of the world, describe the 

available transitions, and solve the problem? 

Initial

state

Goal

state
Actions



What is the goal to be achieved?

� Could describe a situation we want to achieve, a set of properties 

that we want to hold, etc. 

� Requires defining a “goal test” so that we know what it means 

to have achieved/satisfied our goal.

� This is a hard question that is rarely tackled in AI, usually 

assuming that the system designer or user will specify the goal to 

be achieved. 

� Certainly psychologists and motivational speakers always stress 

the importance of people establishing clear goals for themselves

as the first step towards solving a problem. 

� What are your goals???



What is the goal to be achieved?

Start State

Goal State a Goal State b



What are the actions?

� Characterize the primitive actions or events that are 

available for making changes in the world in order to 

achieve a goal. 

� Deterministic world: no uncertainty in an action’s effects. 

Given an action (a.k.a. operator or move) and a description 

of the current world state, the action completely specifies 

� whether that action can be applied to the current world 

(i.e., is it applicable and legal), and 

� what the exact state of the world will be after the action 

is performed in the current world (i.e., no need  for 

“history” information to compute what the new world 

looks like).



Representing actions

�Note also that actions in this framework can all 
be considered as discrete events that occur at 
an instant of time.

� For example, if “Mary is in class” and then 
performs the action “go home,” then in the next 
situation she is “at home.” There is no 
representation of a point in time where she is 
neither in class nor at home (i.e., in the state of 
“going home”).



Representing actions

� The number of actions / operators depends on the 

representation used in describing a state

� In the 8-puzzle, we could specify 4 possible moves for each 

of the 8 tiles, resulting in a total of 4*8=32 operators

� On the other hand, we could specify four moves for the 

“blank” square and we would only need 4 operators 

� BlankUp, BlankDown, BlankLeft, BlankRight

Representational shift can greatly simplify a problem!

Only 4 operators also for 15-puzzle



Representing states

� What information is necessary to encode about the world to 

sufficiently describe all relevant aspects to solving the goal? 

That is, what knowledge needs to be represented in a state 

description to adequately describe the current state or 

situation of the world?

� The size of a problem is usually described in terms of the 

number of states that are possible. 

� Tic-Tac-Toe has about 39 states. 

� Checkers has about 1040 states. 

� Rubik’s Cube has about 1019 states. 

� Chess has about 10120 states in a typical game.



Closed World Assumption

�We will generally use the Closed 

World Assumption.

�All necessary information about a 

problem domain is available in each 

percept so that each state is a complete 

description of the world. 

�There is no incomplete information at 

any point in time.



Some example problems

�Toy problems and micro-worlds

�8-Puzzle

�Missionaries and Cannibals

�Cryptarithmetic

�Remove 5 Sticks

�Water Jug Problem

�Real-world problems



8-Puzzle

Given an initial configuration of 8 numbered tiles 

on a 3 x 3 board, move the tiles in such a way so 

as to produce a desired goal configuration of the 

tiles. 



8 puzzle

�State: 3 x 3 array configuration of the tiles on 

the board. 

�Operators: Blank Left, Blank Right, Blank Up, 

Blank Down. 

�Initial State: A particular configuration of the 

board. 

�Goal: A particular configuration of the board.



The 8-Queens Problem 

Place eight 

queens on a 

chessboard such 

that no queen 

attacks any 

other!



Missionaries and Cannibals
There are 3 missionaries, 3 cannibals, 

and 1 boat that can carry up to two 

people on one side of a river.

� Goal: Move all the missionaries and 

cannibals across the river. 

� Constraint: Missionaries can never be 

outnumbered by cannibals on either side 

of river, or else the missionaries are 

killed. 

� State: configuration of missionaries and 

cannibals and boat on each side of river. 

� Operators: Move boat containing some 

set of occupants across the river (in 

either direction) to the other side.



Missionaries and Cannibals 

Solution
Near side Far side

0 Initial setup:                   MMMCCC  B        -

1 Two cannibals cross over:        MMMC          B  CC

2 One comes back:                  MMMCC   B        C

3 Two cannibals go over again:     MMM           B  CCC

4 One comes back:                  MMMC    B        CC

5 Two missionaries cross:          MC            B  MMCC

6 A missionary & cannibal return:  MMCC    B        MC

7 Two missionaries cross again:    CC            B  MMMC

8 A cannibal returns:              CCC     B        MMM

9 Two cannibals cross:             C             B  MMMCC

10 One returns:                    CC      B        MMMC

11 And brings over the third:      - B  MMMCCC



Remove 5 Sticks

�Given the following 

configuration of 

sticks, remove 

exactly 5 sticks in 

such a way that the 

remaining 

configuration forms 

exactly 3 squares. 



Water Jug Problem

Given a full 5-gallon jug 

and an empty 2-gallon 

jug, the goal is to fill 

the 2-gallon jug with 

exactly one gallon of 

water.

� State = (x,y), where x is 

the number of gallons 

of water in the 5-gallon 

jug and y is # of gallons 

in the 2-gallon jug 

� Initial State = (5,0) 

� Goal State = (*,1), 

where * means any 

amount 

Name Cond. Transition Effect

Empty5 – (x,y)→(0,y) Empty 5-gal. 

jug

Empty2 – (x,y)→(x,0) Empty 2-gal. 

jug

2to5 x ≤ 3 (x,2)→(x+2,0) Pour 2-gal. 

into 5-gal.

5to2 x ≥ 2 (x,0)→(x-2,2) Pour 5-gal. 

into 2-gal.

5to2part y < 2 (1,y)→(0,y+1) Pour partial 

5-gal. into 2-

gal.

Operator table



Some real-world problems

�Route finding

�Touring (traveling salesman)

�Logistics

�VLSI layout

�Robot navigation



Knowledge representation issues

�What’s in a state ? 

� Is the color of the boat relevant to solving the Missionaries 

and Cannibals problem? Is sunspot activity relevant to 

predicting the stock market? What to represent is a very 

hard problem that is usually left to the system designer to 

specify. 

�What level of abstraction or detail to describe the 

world.

� Too fine-grained and we’ll “miss the forest for the trees.”

Too coarse-grained and we’ll miss critical details for 

solving the problem.



Knowledge representation issues

�The number of states depends on the 

representation and level of abstraction chosen. 

� In the Remove-5-Sticks problem, if we represent 

the individual sticks, then there are 17-choose-5 

possible ways of removing 5 sticks. On the other 

hand, if we represent the “squares” defined by 4 

sticks, then there are 6 squares initially and we 

must remove 3 squares, so only 6-choose-3 ways of 

removing 3 squares.



Formalizing search in a state space

�A state space is a graph (V, E) where V is a set of 

nodes and E is a set of arcs, and each arc is directed 

from a node to another node

Each node is a data structure that contains a 

state description plus other information such 

as the parent of the node, the name of the 

operator that generated the node from that 

parent, and other bookkeeping data

Each arc corresponds to an instance of one of 

the operators. When the operator is applied to 

the state associated with the arc’s source 

node, then the resulting state is the state 

associated with the arc’s destination node



Formalizing search II

�Each arc has a fixed, positive cost associated with it 

corresponding to the cost of the operator.

�Each node has a set of successor nodes

corresponding to all of the legal operators that can 

be applied at the source node’s state. 

� The process of expanding a node means to generate all of 

the successor nodes and add them and their associated 

arcs to the state-space graph

�One or more nodes are designated as start nodes.

�A goal test predicate is applied to a state to 

determine if its associated node is a goal node.
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Formalizing search III

�A solution is a sequence of operators that is 

associated with a path in a state space from a 

start node to a goal node.

�The cost of a solution is the sum of the arc 

costs on the solution path.

� If all arcs have the same (unit) cost, then the 

solution cost is just the length of the solution 

(number of steps / state transitions)



Formalizing search IV

� State-space search is the process of searching through a 

state space for a solution by making explicit a sufficient 

portion of an implicit state-space graph to find a goal node. 

� For large state spaces, it isn’t practical to represent the whole space.

� Initially V={S}, where S is the start node; when S is expanded, its 

successors are generated and those nodes are added to V and the 

associated arcs are added to E. This process continues until a goal 

node is found.

� Each node implicitly or explicitly represents a partial 

solution path (and cost of the partial solution path) from the 

start node to the given node. 

� In general, from this node there are many possible paths (and 

therefore solutions) that have this partial path as a prefix.



Search Process

� Search process constructs a search tree, where 

� root is the initial state and 

� leaf nodes are nodes

� not yet expanded (i.e., they are in the list “nodes”) or 

� having no successors (i.e., they’re “deadends” because no 

operators were applicable and yet they are not goals)



Some issues

� Search tree may be infinite because of loops even if state 

space is small

� Return a path or a node depending on problem. 

� E.g., in cryptarithmetic return a node; in 8-puzzle return a path

� Changing the way we choose which state to expand next 

leads to different search strategies



Evaluating search strategies

� Completeness

� Guarantees finding a solution whenever one exists

� Time complexity

� How long (worst or average case) does it take to find a solution? 

Usually measured in terms of the number of nodes expanded

� Space complexity

� How much space (memory) is used by the algorithm? Usually 

measured in terms of the maximum size of the “nodes” list during the 

search

� Optimality/Admissibility

� If a solution is found, is it guaranteed to be an optimal one? That is, is 

it the one with minimum cost?



Uninformed vs. informed search

� Uninformed search strategies

� Also known as “blind search,” uninformed search strategies use no 

information about the likely “direction” of the goal node(s) 

� generate successors 

� distinguish a goal state from a non-goal state 

� Uninformed search methods: Breadth-first, depth-first, depth-limited, 

uniform-cost, depth-first iterative deepening, bidirectional

� Informed search strategies

� Also known as “heuristic search,” informed search strategies use 

information about the domain to (try to) (usually) head in the general 

direction of the goal node(s)

� Informed search methods: Hill climbing, best-first, greedy search, beam 

search, A, A*



Uninformed Search Methods



Breadth-First



Depth-First (DFS)



Breadth-First vs Depth-First (DFS)

Breadth-First
Exponential time and space 

complexity O(bd)

Depth-First

Exponential time O(bd) 

Linear space O(bd)



Breadth-First
� Complete

� Optimal (i.e., admissible) if all operators have the same cost(1)

Otherwise, not optimal but finds solution with shortest path 

length. 

� Exponential time and space complexity, O(bd), where d is the 

depth of the solution and b is the branching factor (i.e., number of 

children) at each node 

� Will take a long time to find solutions with a large number of 

steps because must look at all shorter length possibilities first 

� For a complete search tree of depth 12, where every node at depths 0, ..., 11 has 10 

children and every node at depth 12 has 0 children, there are 1 + 10 + 100 + 1000 + 

... + 1012 = (1013 - 1)/9 = O(1012) nodes in the complete search tree. If BFS expands 

1000 nodes/sec and each node uses 100 bytes of storage, then BFS will take 35 

years to run in the worst case, and it will use 111 terabytes of memory!

(1) more strictly if the path cost is a non decreasing function of the depth of the node



Depth-First (DFS)

� May not terminate without a “depth bound,” i.e., cutting 

off search below a fixed depth D ( “depth-limited search”)

� Complete in Finite State Spaces, otherwise Not complete

(with or without cycle detection, and with or without a 

cutoff depth) 

� Exponential time, O(bd), but only linear space, O(bd)

� Can find long solutions quickly if lucky (and short 

solutions slowly if unlucky!)



Uniform-Cost (UCS)

�Breadth-First search not optimal when steps 

have different costs

�Store nodes in the frontier by path cost. 

� Called “Dijkstra’s Algorithm” in the algorithms literature 

and similar to “Branch and Bound Algorithm” in operations 

research literature 

�Complete (*), Optimal/Admissible (*)

�Exponential time and space complexity, 

O(bd) 



Depth-First Iterative Deepening (DFID)

� First do DFS to depth 0 (i.e., treat start node as 

having no successors), then, if no solution found, 

do DFS to depth 1, etc. 

�Complete1 (if depth limit >= shallowest goal). 

�Optimal/Admissible if all operators have the same 

cost. Otherwise, not optimal but guarantees finding 

solution of shortest length (like BFS). 

�Time complexity is still exponential, O(bd) 

�Linear space complexity, O(bd), like DFS 

(1) solves the infinite-path problem



Depth-First Iterative Deepening

�Has advantage of BFS (i.e., completeness) and 

also advantages of DFS (i.e., limited space and 

finds longer paths more quickly) 

�Generally preferred for large state spaces

where solution depth is unknown



Uninformed Search Results



Example for illustrating uninformed search strategies

S

CBA

D GE

3 1 8

15
20 5

3
7



Depth-First Search 

Expanded node  Nodes list

{ S0 }

S0 { A3 B1 C8 }

A3 { D6 E10 G18 B1 C8 }    

D6 { E10 G18 B1 C8 }

E10 { G18 B1 C8 }               

G18 { B1 C8 } 

Solution path found is S A G, cost 18

Number of nodes expanded (including goal node) = 5



Breadth-First Search

Expanded node  Nodes list

{ S0 }

S0 { A3 B1 C8 }

A3 { B1 C8 D6 E10 G18 }   

B1 { C8 D6 E10 G18 G21 }

C8 { D6 E10 G18 G21 G13 }         

D6 { E10 G18 G21 G13 }   

E10 { G18 G21 G13 }     

G18 { G21 G13 }

Solution path found is S A G , cost 18

Number of nodes expanded (including goal node) = 7



Uniform-Cost Search 

Expanded node  Nodes list

{ S0 }

S0 { B1 A3 C8 }

B1 { A3 C8 G21 }

A3 { D6 C8 E10 G18 G21 }

D6 { C8 E10 G18 G1 }

C8 { E10 G13 G18 G21 }       

E10 { G13 G18 G21 }

G13 { G18 G21 }                             

Solution path found is S B G, cost 13

Number of nodes expanded (including goal node) = 7



How they perform

� Depth-First Search:

� Expanded nodes: S A D E G 

� Solution found: S A G (cost 18)

� Breadth-First Search: 

� Expanded nodes: S A B C D E G 

� Solution found: S A G (cost 18)

� Uniform-Cost Search: 

� Expanded nodes: S A D B C E G 

� Solution found: S B G (cost 13)

This is the only uninformed search that worries about costs.

� Iterative-Deepening Search: 

� nodes expanded: S S A B C S A D E G 

� Solution found: S A G (cost 18)



Bi-directional search

� Alternate searching from the start state toward the goal and 

from the goal state toward the start.

� Stop when the frontiers intersect.

� Works well only when there are unique start and goal states.

� Requires the ability to generate “predecessor” states.

� Can (sometimes) lead to finding a solution more quickly.



Comparing Search Strategies 



Avoiding Repeated States 

� In increasing order of effectiveness in 
reducing size of state space and with 
increasing computational costs:

1. Do not return to the state you just came 
from. 

2. Do not create paths with cycles in them. 

3. Do not generate any state that was ever 
created before.

�Net effect depends on frequency of “loops”
in state space. 



Thanks for coming -- see you 
next Thursday!


