

## CMSC 671 Fall 2010

#### Thu 9/2/10 Agents

Prof. Laura Zavala, <u>laura.zavala@umbc.edu</u>, ITE 373, 410-455-8775

#### Last Class

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ 

- AI: Design of agents that act rationally
- Why AI: Engineering, Cognitive Science, Philosophy
- Let's do some AI: It is straightforward to write a computer program to play tic-tac-toe perfectly
  - State space complexity = 765, Game tree complexity = 26830

#### Some AI milestones

- 1997: Deep Blue beats Garry Kasparov (world champion)
- 2007: Checkers is solved! Checkers program CHINOOK cannot lose (it can draw)

#### **Possible Approaches**





#### What Can Al Systems Do?

- **Computer vision:** face recognition from a large set
- **Robotics:** autonomous (mostly) automobile
- Natural language processing: simple machine translation
- Expert systems: medical diagnosis in a narrow domain
- **Spoken language systems:** ~1000 word continuous speech
- Planning and scheduling: Hubble Telescope experiments
- Learning: text categorization into ~1000 topics
- User modeling: Bayesian reasoning in Windows help (the infamous paper clip...)
- Games: Grand Master level in chess (world champion), perfect play in checkers, professional-level Go players

#### What Can't AI Systems Do Yet?

Exhibit true autonomy and intelligence!

- Understand natural language robustly (e.g., read and understand articles in a newspaper)
- Surf the web
- Interpret an arbitrary visual scene
- Learn a natural language
- Play Go as well as the best human players
- Construct plans in dynamic real-time domains
- Refocus attention in complex environments
- Perform life-long learning



#### Today's class

• What's an agent?

- Definition of an agent
- Rationality and autonomy
- Types of agents
- Properties of environments

Lisp





# Intelligent Agents

## Chapter 2



#### Agents





## How do you design an intelligent agent?

- Definition: An intelligent agent perceives its environment via sensors and acts rationally upon that environment with its effectors.
- A discrete agent receives percepts one at a time, and maps this percept sequence to a sequence of discrete actions.





#### What do you mean, sensors/percepts and effectors/actions?



## sensors/percepts, effectors/actions

#### Humans

- Sensors: Eyes (vision), ears (hearing), skin (touch), tongue (gustation), nose (olfaction), neuromuscular system (proprioception)
- Percepts:
  - At the lowest level electrical signals from these sensors
  - After preprocessing objects in the visual field (location, textures, colors, ...), auditory streams (pitch, loudness, direction), ...
- Effectors: limbs, digits, eyes, tongue, ...
- Actions: lift a finger, turn left, walk, run, carry an object, ...



The Point: percepts and actions need to be carefully defined, possibly at different levels of abstraction



#### A more specific example: Automated taxi driving system

- Percepts: Video, sonar, speedometer, odometer, engine sensors, keyboard input, microphone, GPS, ...
- Actions: Steer, accelerate, brake, horn, speak/display,
- Goals: Maintain safety, reach destination, maximize profits (fuel, tire wear), obey laws, provide passenger comfort, ...
- **Environment**: U.S. urban streets, freeways, traffic, pedestrians, weather, customers, ...

Different aspects of driving may require different types of agent programs!



#### Rationality



- Rationality includes information gathering
- Rationality need a performance measure

#### Autonomy



- A system is autonomous to the extent that its own behavior is determined by its own experience.
- Therefore, a system is not autonomous if it is guided by its designer according to a priori decisions.
- Can computers/robots ever be autonomous?



#### Autonomy



How do humans achieve autonomy?

To survive, agents must have:
Enough built-in knowledge to survive.
The ability to learn.



## Some agent types

#### • (0) Table-driven agents

use a percept sequence/action table in memory to find the next action. They are implemented by a (large) lookup table.

#### (1) Simple reflex agents

 are based on condition-action rules, implemented with an appropriate production system. They are stateless devices which do not have memory of past world states.

#### • (2) Agents with memory

have internal state, which is used to keep track of past states of the world.



## Some agent types

#### (3) Agents with goals

are agents that, in addition to state information, have
 goal information that describes desirable situations.
 Agents of this kind take future events into consideration.

#### (4) Utility-based agents

 base their decisions on classic axiomatic utility theory in order to act rationally.



#### Table-driven/reflex agent architecture



## (0) Table-driven agents

• Table lookup of percept-action pairs mapping from every possible perceived state to the optimal action for that state

#### Problems?

- Too big to generate and to store (Chess has about 10<sup>120</sup> states, for example)
- No knowledge of non-perceptual parts of the current state
- Not adaptive to changes in the environment; requires entire table to be updated if changes occur
- Looping: Can't make actions conditional on previous actions/states

## (1) Simple reflex agents

 Rule-based reasoning to map from percepts to optimal action; each rule handles a collection of perceived states

#### Problems?

- Still usually too big to generate and to store
- Still no knowledge of non-perceptual parts of state
- Still not adaptive to changes in the environment; requires collection of rules to be updated if changes occur
- Still can't make actions conditional on previous state

#### Example





#### Example

The Vacuum-Cleaner Mini-World World State Action B A[A, Clean] Right [A, Dirty] Suck [B, Clean] Left No oc Suck [B, Dirty] Right [A, Dirty], [A, Clean] [A, Clean], [B, Dirty] Suck Left [B, Dirty], [B, Clean] [B, Clean], [A, Dirty] Suck [A, Clean], [B, Clean] No-op [B, Clean], [A, Clean] No-op



#### Example





### (2) Architecture for an agent with

memory





## (2) Agents with memory

- Encode "internal state" of the world to remember the past as contained in earlier percepts.
- Why is that even needed?
- Sensors do not usually give the entire state of the world at each input, so perception of the environment is captured over time.
- "State" is used to encode different "world states" that generate the same immediate percept.

#### An example: Brooks's Subsumption Architecture

- Main idea: build complex, intelligent robots by decomposing behaviors into a hierarchy of skills, each completely defining a complete percept-action cycle for one very specific task.
- Examples: avoiding contact, wandering, exploring, recognizing doorways, etc.
- Each behavior is modeled by a finite-state machine with a few states (though each state may correspond to a complex function or module).
- Behaviors are loosely coupled, asynchronous interactions.

## (3) Architecture for goal-based

agent





## (3) Goal-based agents

- Choose actions so as to achieve a (given or computed) goal.
- A goal is a description of a desirable situation.
- Keeping track of the current state is often not enough – need to add goals to decide which situations are good
- Deliberative instead of reactive.
- May have to consider long sequences of possible actions before deciding if goal is achieved involves consideration of the future, "what will happen if I do...?"

## (4) Architecture for a complete utility-based agent



## (4) Utility-based agents

- When there are multiple possible alternatives, how to decide which one is best?
- A goal specifies a crude distinction between a happy and unhappy state
  - often need a more general performance measure that describes "degree of happiness."
  - Utility function U: State  $\rightarrow$  Real

## Properties of Environments

#### Fully observable/Partially observable.

- If an agent's sensors give it access to the complete state of the environment needed to choose an action, the environment is **fully** observable.
- Such environments are convenient, since the agent is freed from the task of keeping track of the changes in the environment.

#### Deterministic/Stochastic.

 An environment is deterministic if the next state of the environment is completely determined by the current state of the environment and the action of the agent; in a stochastic environment, there are multiple, unpredictable outcomes

Fully observable + Deterministic → no need to deal with uncertainty

## Properties of Environments II

#### **Episodic/Sequential**.

- An episodic environment means that subsequent episodes do not depend on what actions occurred in previous episodes.
- In a sequential environment, the agent engages in a series of connected episodes.
- <sup>D</sup> Such environments do not require the agent to plan ahead.

#### Static/Dynamic.

- A static environment does not change while the agent is thinking.
- The passage of time as an agent deliberates is irrelevant.
- The agent doesn't need to observe the world during deliberation.

## **Properties of Environments III**

#### Discrete/Continuous.

 If the number of distinct percepts and actions is limited, the environment is **discrete**, otherwise it is **continuous**.

#### Single agent/Multi-agent.

- If the environment contains other intelligent agents, the agent needs to be concerned about strategic, game-theoretic aspects of the environment (for either cooperative *or* competitive agents)
- Most engineering environments don't have multi-agent properties, whereas most social and economic systems get their complexity from the interactions of (more or less) rational agents.

|                      | Fully<br>observable? | Deterministic? | Episodic? | Static? | Discrete? | Single agent? |
|----------------------|----------------------|----------------|-----------|---------|-----------|---------------|
| Solitaire            |                      |                |           |         |           |               |
| Backgammon           |                      |                |           |         |           |               |
| Taxi driving         |                      |                |           |         |           |               |
| Internet<br>shopping |                      |                |           |         |           |               |
| Medical<br>diagnosis |                      |                |           |         |           |               |



 $\ominus \ominus \ominus$ 

|                      | Fully<br>observable? | Deterministic? | Episodic? | Static? | Discrete? | Single agent? |
|----------------------|----------------------|----------------|-----------|---------|-----------|---------------|
| Solitaire            | No                   |                |           |         |           |               |
| Backgammon           | Yes                  |                |           |         |           |               |
| Taxi driving         | No                   |                |           |         |           |               |
| Internet<br>shopping | No                   |                |           |         |           |               |
| Medical<br>diagnosis | No                   |                |           |         |           |               |



|                      | Fully<br>observable? | Deterministic? | Episodic? | Static? | Discrete? | Single agent? |
|----------------------|----------------------|----------------|-----------|---------|-----------|---------------|
| Solitaire            | No                   | Yes            |           |         |           |               |
| Backgammon           | Yes                  | No             |           |         |           |               |
| Taxi driving         | No                   | No             |           |         |           |               |
| Internet<br>shopping | No                   | No             |           |         |           |               |
| Medical<br>diagnosis | No                   | No             |           |         |           |               |



|                      | Fully<br>observable? | Deterministic? | Episodic? | Static? | Discrete? | Single agent? |
|----------------------|----------------------|----------------|-----------|---------|-----------|---------------|
| Solitaire            | No                   | Yes            | Yes       |         |           |               |
| Backgammon           | Yes                  | No             | No        |         |           |               |
| Taxi driving         | No                   | No             | No        |         |           |               |
| Internet<br>shopping | No                   | No             | No        |         |           |               |
| Medical<br>diagnosis | No                   | No             | No        |         |           |               |



|                      | Fully<br>observable? | Deterministic? | Episodic? | Static? | Discrete? | Single agent? |
|----------------------|----------------------|----------------|-----------|---------|-----------|---------------|
| Solitaire            | No                   | Yes            | Yes       | Yes     |           |               |
| Backgammon           | Yes                  | No             | No        | Yes     |           |               |
| Taxi driving         | No                   | No             | No        | No      |           |               |
| Internet<br>shopping | No                   | No             | No        | No      |           |               |
| Medical<br>diagnosis | No                   | No             | No        | No      |           |               |



|                      | Fully<br>observable? | Deterministic? | Episodic? | Static? | Discrete? | Single agent? |
|----------------------|----------------------|----------------|-----------|---------|-----------|---------------|
| Solitaire            | No                   | Yes            | Yes       | Yes     | Yes       |               |
| Backgammon           | Yes                  | No             | No        | Yes     | Yes       |               |
| Taxi driving         | No                   | No             | No        | No      | No        |               |
| Internet<br>shopping | No                   | No             | No        | No      | Yes       |               |
| Medical<br>diagnosis | No                   | No             | No        | No      | No        |               |



|                      | Fully<br>observable? | Deterministic? | Episodic? | Static? | Discrete? | Single agent? |
|----------------------|----------------------|----------------|-----------|---------|-----------|---------------|
| Solitaire            | No                   | Yes            | Yes       | Yes     | Yes       | Yes           |
| Backgammon           | Yes                  | No             | No        | Yes     | Yes       | No            |
| Taxi driving         | No                   | No             | No        | No      | No        | No            |
| Internet<br>shopping | No                   | No             | No        | No      | Yes       | No            |
| Medical<br>diagnosis | No                   | No             | No        | No      | No        | Yes           |

 $\rightarrow$  Lots of real-world domains fall into the hardest case!

#### Summary

- An **agent** perceives and acts in an environment, has an architecture, and is implemented by an agent program.
- An **ideal agent** always chooses the action which maximizes its expected performance, given its percept sequence so far.
- An **autonomous agent** uses its own experience rather than built-in knowledge of the environment by the designer.
- An **agent program** maps from percept to action and updates its internal state.
  - **Reflex agents** respond immediately to percepts.
  - **Goal-based agents** act in order to achieve their goal(s).
  - Utility-based agents maximize their own utility function.
- **Representing knowledge** is important for successful agent design.
- The most challenging environments are partially observable, stochastic, sequential, dynamic, and continuous, and contain multiple intelligent agents.