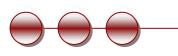


CMSC 671 Fall 2010


Tue 8/31/10 Introduction to Artificial Intelligence Course Overview

Professor Rosa Laura Zavala, <u>laura.zavala@umbc.edu</u>, ITE 373, 410-455-8775

What is Al??


Can machines think?

- If so, how?
- If not, why not?
- What does this say about human beings?
- What does this say about the mind?

Eliza: A computer therapist

• This is a transcript of a conversation with an Elizalike program found in Emacs

• Try typing

Meta-x doctor

in your favorite Emacs.

- I am the psychotherapist. Please, describe your problems. Each time you are finished talking, type RET twice.
- i'm having a hard time with my students
- Why do you say that?
- well, they keep asking me for money
- Maybe your plans have something to do with this.
- what plans?
- Is it because of your life that you say what plans?
- No, it's because I didn't know what you were talking about
- Is it because you didn't know what I was talking about that you came to me?
- no, it's because i wanted to see if you could pass the turing test
- Does it bother you that you wanted to see if I could really page the turing test?

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

- ELIZA: A program that simulated a psychotherapist interacting with a patient and successfully passed the Turing Test.
- Coded at MIT during 1964-1966 by Joel Weizenbaum.
- First script was DOCTOR.
 - The script was a simple collection of syntactic patterns not unlike regular expressions
 - Each pattern had an associated reply which might include bits of the input (after simple transformations (my \rightarrow your)
- Weizenbaum was shocked at reactions:
 - Psychiatrists thought it had potential.
 - People unequivocally anthropomorphized.
 - Many thought it solved the NL problem.

Kenneth Colby modeled a paranoid using the same techniques circa 1968.
PARRY has basic emotions. If it gets angry, its replies become more hostile.
In a Turing test, expert

In a Turing test, expert psychiatrists were unable to distinguish PARRY's ramblings from those of real paranoids. H: Good afternoon. My name is Doctor Jones.

- P: Pleased to meet you.
- H: How are you?
- P: All right I guess.
- H: Could you tell me your name?
- P: Pat Smith.
- H: I though you might have some problems.
- P: I've been upset lately.
- H: By what?
- P: People get on my nerves sometimes.
- H: Tell me more.
- P: Do you know anything about bookies?

Turing Test

- Three rooms contain a person, a computer, and an interrogator.
- The interrogator can communicate with the other two by teleprinter.
- The interrogator tries to determine which is the person and which is the machine.
- The machine tries to fool the interrogator into believing that it is the person.
- If the machine succeeds, then we conclude that the machine can think.

The Loebner Contest

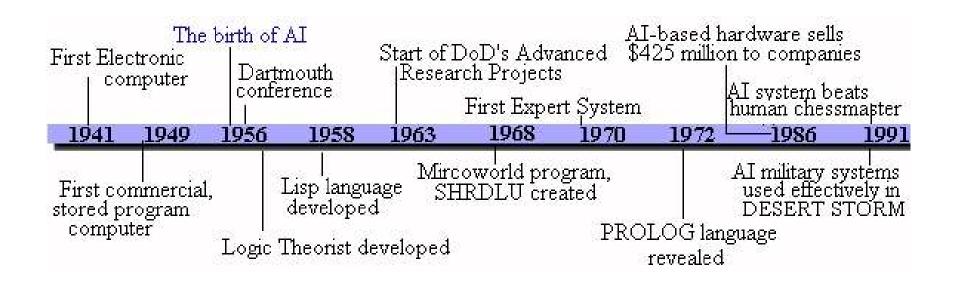
- A modern version of the Turing Test, held annually, with a \$100,000 cash prize.
- Hugh Loebner was once director of UMBC's Academic Computing Services (née UCS)
- http://www.loebner.net/Prizef/loebner-prize.html
- Restricted topic (removed in 1995) and limited time.
- Participants include a set of humans and a set of computers and a set of judges.
- Scoring
 - Rank from least human to most human.
 - Highest median rank wins \$2000.
 - If better than a human, win \$100,000. (Nobody yet...)


Please tell me *this* isn't AI!

Parry

- P: I don't understand your motives.
- E: Why don't you understand my motives?
- P: Shouldn't I be?
- E: Why do you say that just now?
- P: That's just the way it is.
- E: Suppose that's the way it were not.
- P: So?
- E: I am not sure I understand you fully.
- P: You harp on the same questions too much.
- E: What does that similarity suggest to you?
- P: I don't get you.
- E: Do you wish that you did get I?

History



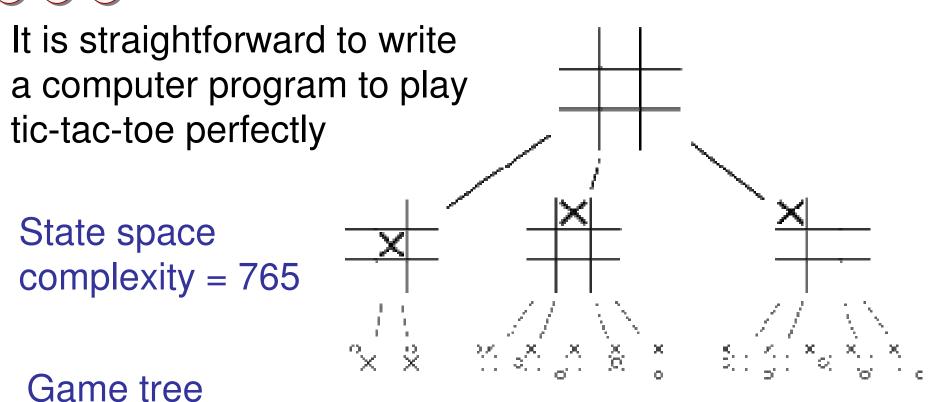
Does Al involve reasoning?

- Back to our initial questions what is AI? what is Intelligence?
- High-level reasoning
- Behavior-based approach to robotics
 cognition is only in the eye of an observer

History

- 1997: Deep Blue beats Garry Kasparov (world champion)
- 1998: Founding of Google
- 2000: Interactive robot pets
- 2004: First DARPA Grand Challenge robot race
- 2004: Commercial recommender systems (TIVO, amazon.com)
- 2007: Checkers is solved!

Let's do some Al

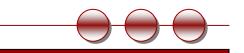

Tic Tac Toe

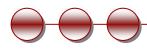
How would you build of a program that plays (optimally) Tic Tac Toe?

Let's do some Al

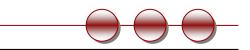
complexity = 26830

Best play from both parties leads to a draw !!!



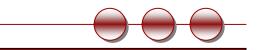

 Roughly 500 billion billion possible positions (5 x 10²⁰)

• Game complexity of approx. 10²⁰


 The checkers program CHINOOK cannot lose (it can draw)

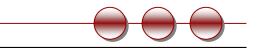
Why AI?

- Engineering: To get machines to do a wider variety of useful things
 - e.g., understand spoken natural language, recognize individual people in visual scenes, find the best travel plan for your vacation, etc.

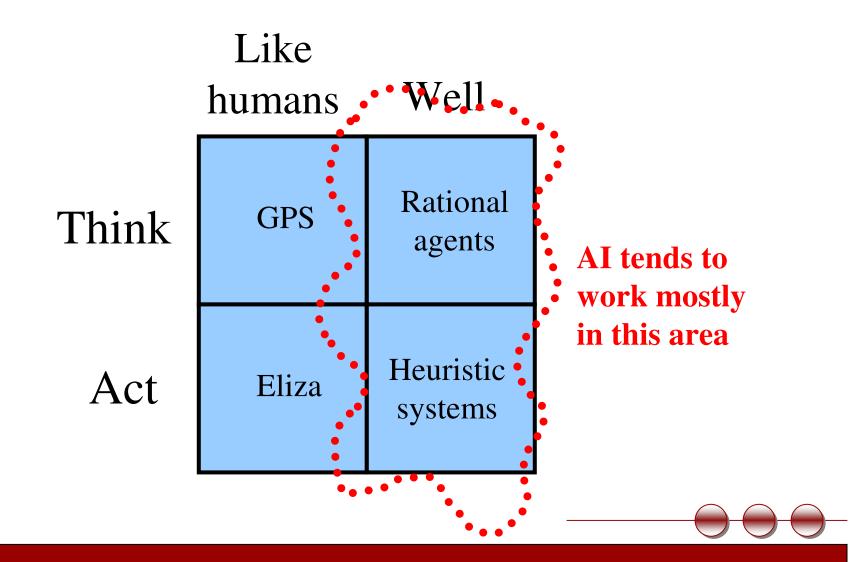


Why AI?

Cognitive Science: As a way to understand how the human mind works


 e.g., visual perception, memory, learning, language, etc.

Why AI?

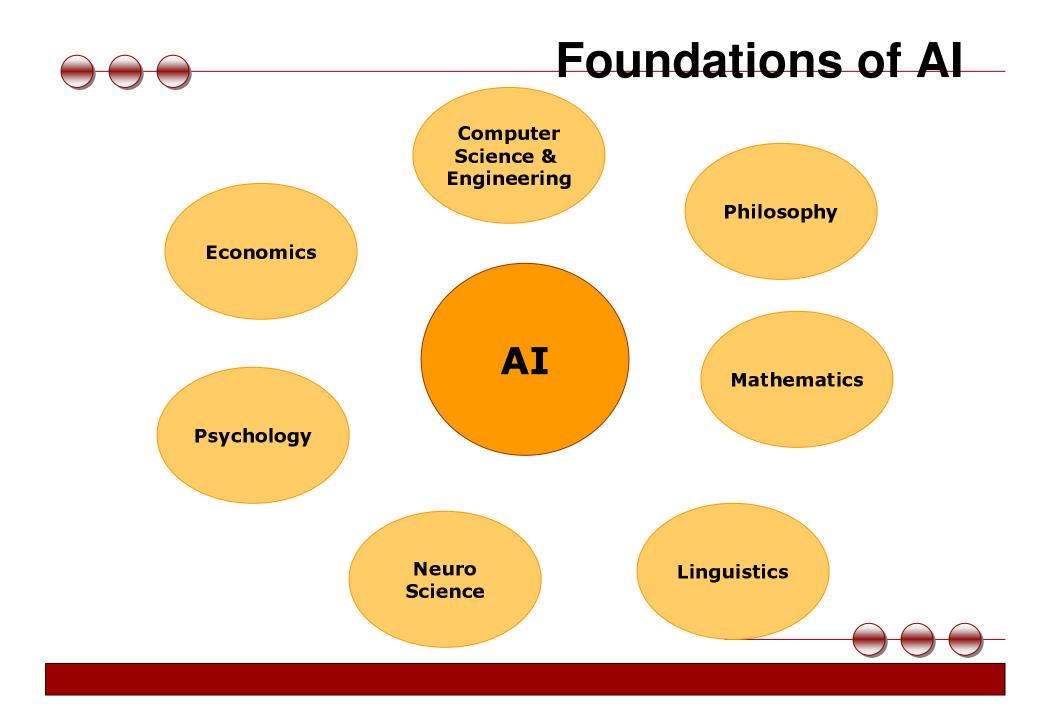


- Philosophy: As a way to explore some basic and interesting (and important) philosophical questions
 - e.g., the mind body problem, what is consciousness, etc.

Possible Approaches

- Develop formal models of knowledge representation, reasoning, learning, memory, and problem solving, that can be rendered in algorithms.
- There is often an emphasis on systems that are provably correct, and guarantee finding an optimal solution.

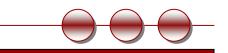
- For a given set of inputs, generate an appropriate output that is not necessarily correct but gets the job done.
- A heuristic (heuristic rule, heuristic method) is a rule of thumb, strategy, trick, simplification, or any other kind of device which drastically limits search for solutions in large problem spaces.


So, What is Al

 Design of agents that act rationally: act so as to achieve the best outcome or, when there is uncertainty, the best expected outcome.

- Represent and store knowledge
- Retrieve and reason about knowledge
- Behave intelligently in complex environments
- Develop interesting and useful applications
- Interact with people, agents, and the environment

- It's been easier to mechanize many of the high-level tasks we usually associate with "intelligence" in people
 - e.g., symbolic integration, proving theorems, playing chess, medical diagnosis
- It's been very hard to mechanize tasks that lots of animals can do
 - walking around without running into things
 - catching prey and avoiding predators
 - interpreting complex sensory information


What Can Al Systems Do?

- **Computer vision:** face recognition from a large set
- Robotics: autonomous (mostly) automobile
- Natural language processing: simple machine translation
- Expert systems: medical diagnosis in a narrow domain
- **Spoken language systems:** ~1000 word continuous speech
- Planning and scheduling: Hubble Telescope experiments
- Learning: text categorization into ~1000 topics
- User modeling: Bayesian reasoning in Windows help (the infamous paper clip...)
- Games: Grand Master level in chess (world champion), perfect play in checkers, professional-level Go players

What Can't AI Systems Do Yet?

Exhibit true autonomy and intelligence!

- Understand natural language robustly (e.g., read and understand articles in a newspaper)
- Surf the web
- Interpret an arbitrary visual scene
- Learn a natural language
- Play Go as well as the best human players
- Construct plans in dynamic real-time domains
- Refocus attention in complex environments
- Perform life-long learning

AI: A universal field

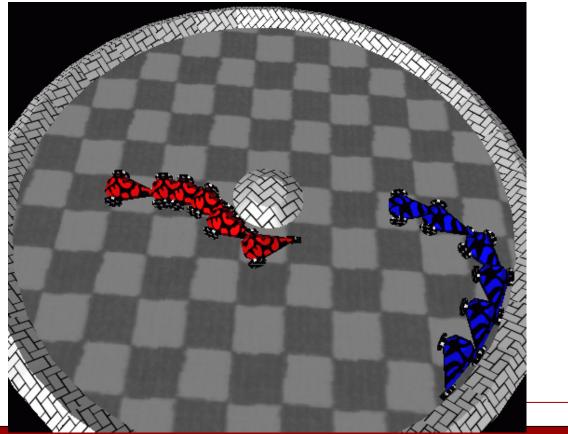
- Learning and perception
- Playing chess
- Proving mathematical theorems
- Writing poetry
- Driving a car on a crowded street
- Diagnosing diseases

AI: A universal field

- Scheduling train crews
- Automated student essay evaluation
- Packet scheduling in network routers
- Broadcast news understanding
- Vehicle diagnosis
- Robot photography

l'liT

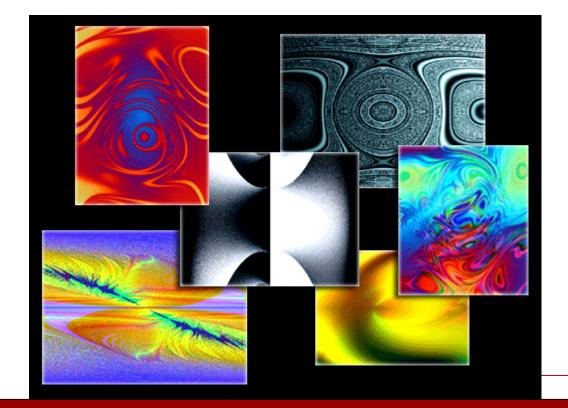
Who Does AI?


Academic researchers

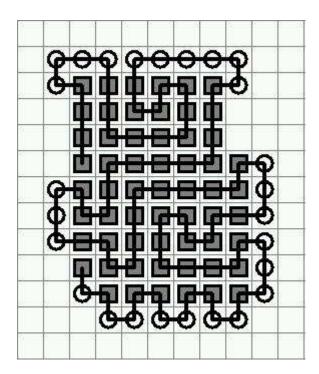
- CMU, Stanford, Berkeley, MIT, UIUC, UMd, U Alberta, UT Austin, ... (and, of course, UMBC!)
- Government and private research labs
 NASA, NRL, NIST, IBM, AT&T, SRI, ISI, MERL, ...
- Lots of companies!
 - Google, Microsoft, Honeywell, Teknowledge, SAIC, MITRE, Fujitsu, Global InfoTek, BodyMedia, ...

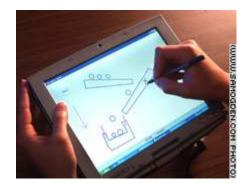
Evolutionary Optimization

MERL: evolving 'bots



Al and Art: NEvAr


See http://eden.dei.uc.pt/~machado/NEvAr



Interaction: Sketching

MIT sketch tablet

What Do Al People (and the Applications they Build) Do?

- Represent knowledge
- Reason about knowledge
- Behave intelligently in complex environments
- Develop interesting and useful applications
- Interact with people, agents, and the environment

Homework

• Pretest (due next week, Tuesday 9/7)

Course Overview

Expectations and preparation

- No prior AI experience is required
- Some knowledge of:
 - Propositional and basic first-order logic (there-exists, for-all)
 - Algorithmic analysis (big-O notation, NPcompleteness)
 - Basic probability theory
- Pretest
 - Purpose: To help me assess students' knowledge

Course materials

Course website: <u>http://www.cs.umbc.edu/courses/graduate/671</u> /fall10b/

- Course description and policies (main page)
- Course syllabus, schedule (subject to change!), and slides
- Pointers to homeworks and papers (send me URLs for interesting / relevant websites, and I'll add them to the page!)

Course materials

Course mailing list: cpscmsc671@lists.umbc.edu

- Visit http://lists.umbc.edu
- Search for cps-cmsc671
- Click "Subscribe" link
- Send general questions to the list
- Requests for extensions, inquiries about status, requests for appointments should go directly to Prof. Zavala

Preliminary grading distribution

- Homework Assignments 25%
- Midterm Exam 20%
- Final Exam 20%
- Final Project 25%
- Final Presentation 10%

- Office hours: Mondays and Wednesdays 1:30-2:30 (ITE 373)
- Appointments may also be made by request (at least 24 hours notice is best)
- Drop in whenever my door is open
- Will try to respond to e-mail within 24 hours on weekdays
- Direct general questions (i.e., those that other students may also be wondering about) to the class mailing list

Thanks for coming -- see you next Thursday!

